С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Автоматическое управление автомобилем


Avto-Science.ru

Стремительное развитие автомобильных электронных систем делает реальной идею беспилотного автомобиля. Многие автопроизводители и другие компании активно работают над созданием системы автоматического управления автомобилем. Задача решается по двум направлениям:

  • комплексная автоматизация автомобиля;
  • автоматизация отдельных режимов движения транспортного средства (парковка, движение в пробках, перемещение по автомагистрали).

Комплексный подход к созданию беспилотного автомобиля реализуют только две фирмы – могущественный Google и амбициозная российская компания РобоСиВи. В настоящее время разрабатываются и внедряются различные системы автоматической парковки, обеспечивающие параллельную и (или) перпендикулярную парковку автомобиля в автоматическом режиме. Парковочный автопилот имеют в активе BMW, Ford, Mercedes-Benz, Nissan, Opel, Toyota, Volkswagen.

Дальнейшее совершенствование системы адаптивного круиз-контроля позволяет реализовать автоматический режим движения автомобиля в пробках. В данном направлении работают Audi, Ford. Другим направлением является автоматизация движения автомобиля по автомагистрали. Разработки BMW, Cadillac основываются на существующих системах активной безопасности.

Система автоматического управления

В настоящее время система автоматического управления от Google реализована на шести опытных автомобилях Toyota Prius, Lexus RX 450h и Audi TT, которые проехали в беспилотном режиме свыше 450000 км. Для реализации функций автоматического управления система включает в себя следующие входные устройства: лидар, радары, видеокамера, датчик оценки положения, инерционный датчик движения, GPS приемник.

Лидар сканирует область вокруг автомобиля на расстоянии более 60 м и создает точную трехмерную картину его окружения. Лидар представляет собой вращающийся датчик на крыше автомобиля.

Радары помогают определить точное положение удаленных объектов. На автомобиле установлены четыре радара, три из которых расположены в передней части, а один радар – сзади.

Видеокамера определяет сигналы светофора и позволяет блоку управления распознавать движущиеся объекты, в т.ч. пешеходов и велосипедистов. Видеокамера располагается на лобовом стекле за зеркалом заднего вида.

Датчик оценки положения фиксирует движение автомобиля и помогает определить его точное местоположение на карте. Датчик оценки положения установлен на левом заднем колесе.

Инерционный датчик движения измеряет направление ускорения или замедления, продольный и поперечный крен кузова автомобиля, при его движении. Используется датчик системы курсовой устойчивости.

Сигналы от входных устройств передаются в электронный блок управления, где производится их обработка в соответствии с заложенной программой и формирование управляющих воздействий на исполнительные устройства. В качестве исполнительных устройств используются конструктивные элементы рулевого управления, тормозной системы, системы курсовой устойчивости,системы управления двигателем.

Российский автопилот

Проект по созданию российского автопилота стартовал в начале 2012 года по инициативе компании РобоСиВи. Система включает два основных блока – навигационный комплекс ГЛОНАСС и т.н. комплекс технического зрения. Что входит в комплекс технического зрения компания пока не раскрывает, говориться только о большом количестве датчиков.

В настоящее время производится тестирование системы на малогабаритной модели, в которой реализованы функции прокладки маршрута, трогания с места, маневрирования, торможения при возникновении препятствия (транспортное средство, люди). Несмотря на то, что российская компания работы начала значительно позже Google, она имеет все шансы добиться конкурентного преимущества за счет невысокой цены (предположительно в 50 раз дешевле Google) и универсальности.

Система Temporary Auto Pilot

В рамках проекта HAVit (Highly Automated Vehicles for Intelligent Transport – Высокоавтоматизированные автомобили для интеллектуального транспорта) в 2011 году была представлена полуавтоматическая система Temporary Auto Pilot, TAP(Временный автопилот). Система позволяет водителю в определенных условиях отдать управление автомобилем под контроль автоматики. По своей сути система является промежуточным этапом на пути к роботизированному автомобилю.

Система TAP объединяет в единое целое уже известные разработки Volkswagen: систему адаптивного круиз-контроля, систему помощи движению по полосе, систему распознавания дорожных знаков. В своей работе система Временного автопилотирования использует стандартные входные устройства перечисленных систем активной безопасности: лидар, радар, видеокамеру, ультразвуковые датчики.

Сигналы от входных устройств передаются в электронный блок управления, который с помощью исполнительных механизмов реализует следующие автоматические функции:

  • поддержание безопасного расстояния до впереди идущего автомобиля;
  • остановка и трогание с места;
  • движение по полосе;
  • распознавание знаков ограничения скорости и приведение скорости в соответствие с требованиями знака.

Система обеспечивает оптимальную степень автоматизации в зависимости от дорожной ситуации и состояния водителя, тем самым способствует безаварийному движению. Система работает на скорости до 130 км/ч. Система TAP полностью готова для внедрения на серийные автомобили.

Система Traffic Jam Assistant

Система Traffic Jam Assistant от Audi - первая серийная система автопилота для движения в пробках. Система автоматически поддерживает дистанцию до впереди идущей машины, тормозит, разгоняется, поворачивает, объезжает препятствия и даже уступает дорогу машинам экстренных служб. Конструктивно автопилот для пробок построен на основе адаптивного круиз-контроля и работает на скорости от 0 до 60 км/ч.

Система объединяет рад входных устройств: два радара, широкоугольную видеокамеру и восемь ультразвуковых датчиков. Радары сканируют определенные секторы на расстоянии 250 м. Видеокамера определяет дорожную разметку и различные препятствия. Ультразвуковые датчики контролируют пространство спереди, сзади и сбоку автомобиля. В любой момент работы системы водитель может взять управление автомобилем на себя.

Система Traffic Jam Assist

Систему автоматического движения в пробках готовит Ford и планирует ее использование на серийных автомобилях к 2017 году. Система Traffic Jam Assist включает радар и камеру, которые отслеживают движение соседних машин. Электронный блок управления выбирает нужную скорость и обеспечивает движение автомобиля в потоке.

Система ConnectedDrive Connect

Компания BMW работает над системой ConnectedDrive Connect (CDC), предназначенной для движения по автомагистрали. Система CDC включает ультразвуковой датчик, камеру, радары и лидар, сигналы от которых обрабатываются в электронном блоке управления. В результате воздействия на исполнительные механизмы различных систем автомобиля, изменяется его скорость и траектория движения. Помимо этого, система не превышает разрешенной на участке скорости, не производит обгон справа, а также возвращает автомобиль в свой ряд после обгона. В общем, в автопилоте реализован алгоритм идеального водителя. По заявлению компании система пока не готова к серийному применению.

Система Super Cruise

Система автоматического управления Super Cruise от Cadillac обеспечивает движение автомобиля по автомагистрали. Она позволяет осуществлять маневрирование, торможение, движение по полосе без участия водителя.

Система построена на ряде готовых решений компании:

  • адаптивном круиз-контроле;
  • системе автоматического экстренного торможения;
  • системе предупреждения о столкновении;
  • системе помощи движению по полосе;
  • системе помощи при перестроении;
  • системе активного головного света;
  • и др.

Текущее положение автомобиля оценивается с помощью входных устройств – радара, ультразвуковых датчиков, камеры и системы GPS. Разработчик отмечает, что эффективность работы системы зависит от внешних факторов – погода, наличие разметки.

Система SARTRE

Интересное решение автоматизации движения автомобиля предлагает компания Volvo. Система Safe Road Trains for the Environment (SARTRE) позволяет нескольким машинам двигаться по дороге в организованной колонне. Автомобили идут за головной машиной, в качестве которой выбирается грузовой автомобиль с водителем-профессионалом. Автомобили выстраиваются с дистанцией 6 м и полностью повторяют движение ведущего грузовика, что позволяет водителем отдохнуть, покушать, поговорить по телефону.

По желанию каждый из автомобилей в любой момент может покинуть группу. Для создания системы SARTRE используются наработки Volvo в области активной безопасности, в т.ч. адаптивный круиз-контроль. В настоящее время система находится в стадии испытаний.

avto-science.ru

Автоматизированные электронные помощники автомобилистов

А знаете ли вы, что в ближайшем будущем водитель автомобиля сможет даже спать в дороге, полностью доверив управление транспортным средством роботу? Что, не верится? Кажется сюжетом из фантастического фильма? Уже сегодня известны электронные помощники автомобилиста, о которых лет десять назад можно было только мечтать. Такие программы, как контроль ухода с полосы движения, система автоматической парковки, активный круиз-контроль и другие, сегодня считаются привычными и удивления у современного человека не вызывают, хотя раньше к ним относились с недоверием. Попробуем в этой статье рассмотреть самые популярные электронные помощники автомобилиста.

Автомобиль-беспилотник от BMW

Взгляд со стороны

Автомобиль, который сам контролирует ситуацию, — это мечта водителя былых лет, которого тогда ещё не так «доставали» городские пробки и неравномерный темп езды. Машина, которая едет сама, а водитель только контролирует ситуацию — цель и задача, над которыми работали практически все конструкторы того времени, и своего они достигли за какие-то несколько лет.

Сегодня автомобилей, способных передвигаться по улицам самостоятельно, без водителя, существует немало. Тем, кто следит за последними новостями из мира науки, будет известно, что такими автомобилями можно назвать транспортное средство от Google или итальянский ромобиль VisLab, который удачно совершил беспилотный рейс из Милана до края планеты. Такое раньше можно было увидеть только в кино или прочитать в романах известного писателя Яна Флеминга. Но как известно, человеческая мысль — это нечто удивительное и до конца не раскрытое. Мы, люди, способны на многое и это доказываем ежедневно, участвуя в прогрессе технологий на планете Земля.

Хотя примеры высокотехнологичных беспилотных автомобилей и существуют, но до дилерских центров сегодня им ещё далеко. Может быть, лет через десять или ещё раньше их можно будет свободно приобретать, но пока сделать это не удастся простым смертным. И дело не в ограниченности количества выпускаемых беспилотников, а в цене, которую заплатить за такой автомобиль сможет разве что Билл Гейтс или кто-нибудь ещё из его братии.

Но напомним вновь, что человеческий гений не дремлет и железо куёт горячим. Когда в 1978 году была представлена первая в мире антиблокировочная система тормозов, которую сегодня все узнают под названием АБС, её никто не воспринимал всерьёз и вряд ли надеялся, что с этого самого момента электроника станет незаменимым помощником водителя в экстренных ситуациях. Технологический прогресс сделал огромный шаг вперёд, и электроника сегодня решает огромное количество различных задач.

Итальянский ромобиль VisLab

На сегодняшний день главнейшей целью инженеров является создание такой электроники, которая бы сделала управление автомобилем более комфортным и безопасным. Сократить количество ДТП на дорогах всех стран мира — глобальная задача! Именно ради этой цели автомобиль и снабжают всевозможными датчиками и вооружают мощными программами, способными думать практически как человек.

Сегодня автомобильный мир переживает настоящую революцию. Высокие технологии и их прогресс затронули практически все сферы человеческой деятельности, не оставив за бортом и автомобили. Потребительский спрос постоянно и на протяжении веков изучался и изучается наукой. Сегодня автопроизводители и различные независимые эксперты пытаются найти верные решения и собрать общую информацию, касающуюся потребностей людей, заинтересованных в покупке авто.

Как говорится, сколько людей, столько и мнений, но всё же существуют общие принципы, которыми руководствуется определённая часть человечества. Знание этих самых принципов и становится полезным при создании новых автомобилей.

Примечательно, что результаты опроса, проведённого онлайн-порталом Autoscout24, показали, что из 800 человек Европы только 160 предпочли безопасности что-либо другое. Остальные все, как один, заявили, что самым важным для них в автомобиле является его безопасная функциональная возможность.

На второе место после безопасности 800 европейцев из различных социальных слоёв общества поставили различные сетевые технологии, которые бы брали на себя управление автомобилем, тем самым давая одновременно человеку комфорт и безопасность. К таким технологическим системам, к примеру, европейцы отнесли автоматическое торможение, которое бы подключалось в тот момент, когда впереди распознавалась опасность или преграда. Полезно было бы, по мнению опрошенных, чтобы, в случае ДТП, в соответствующие службы поступал автоматический звонок. Ниже приведены все подобные системы, которые уже существуют или же создание которых планируется вскоре.

Кроме того, в последнее время появляется большое количество новейших радаров, ультразвуковых и инфракрасных датчиков, телекамер и тому подобного. Современные антенны GPS способны определять местоположение автомобиля с погрешностью всего лишь в несколько сантиметров.

Датчики — это разговор отдельный. С каждым днём создаются всё более сложные и чувствительные устройства. Они способны и видеть, и слышать то, что происходит вокруг. Кроме того, создаются датчики, которые предназначены для систем стабилизации. Они способны обрабатывать информацию, которая поступает из всех источников, а электроника рассчитывает динамику движения, посылая соответствующие сигналы тормозам, педали газа, коробке передач и другим элементам автомобиля. Именно на этом принципе и строится вся работа беспилотного устройства.

Системы автоматизации автомобиля
Радар дальнего радиуса действия
Телекамера ночного видения
Передний радар среднего радиуса действия
Телекамера среднего радиуса действия
Ультразвуковые датчики
Телекамера заднего обзора
Телекамера малого радиуса действия
Задний радар среднего радиуса действия

Система, которая является одной из лучших в плане сохранения безопасности. Когда автомобиль по какой-либо причине уходит с полосы движения, робот получает сигнал от вибрации руля и возвращает машину обратно на нужный путь.

О таком впервые человечество услышало в 2000 году, когда подобными электронными системами стали оснащать грузовые автомобили. Робота назвали Lane Departure Warning и он устанавливался в первую очередь на грузовики, потому что водитель-дальнобойщик проводил в монотонном движении много часов подряд.

Сначала электроника работала примитивно. Стоило грузовику пересечь разделительную линию без включения поворотника, как в кабине моментально раздавался звуковой сигнал.

Спустя год японцы создали электронику подобного вида для легковых автомобилей и устанавливали роботы на модели машин исключительно отечественного производства. И затем пошло-поехало. В 2005 году таким роботом оснастили Ситроен C5, а спустя некоторое время и другие модели.

На видео — Ситроен C5:

В первое время роль «глаз» выполняли инфракрасные датчики, которые ставились под днищем автомобиля (напомним, что сегодня эту роль выполняет телекамера, которая устанавливается за ветровым стеклом машины). В тот момент, когда автомобиль начинал уходить с нужной полосы, начинало вибрировать сидение водителя или рулевое колесо.

Отметим, что сегодня известны системы контроля, которые активно удерживают автомобиль на полосе движения, — Lane Keeping System. Такая электроника способна воздействовать на тормоза и руль транспортного средства, не только давая подсказки водителю, но и корректируя траекторию движения. И это ещё не всё. Сегодня компания Вольво работает над созданием такой электроники, которая бы могла распознавать обочину дороги и различные ограждения, а Мерседес S-класса уже сегодня сам наблюдает за обстановкой на дороге и самостоятельно может изменять траекторию, если что.

Система автопарковки

Для многих водителей-новичков эта система стала просто спасением. Она помогает водителям удачно припарковать автомобиль пока что под частичным управлением электроники. Скоро уже будут созданы роботы, которые сами будут парковаться, без участия в процессе человека.

Увидеть в сети множество смешных роликов о том, к чему приводят неудачные попытки припарковаться, может каждый. И для устранения этого и предназначены роботы-помощники, снабжённые ультразвуковыми датчиками. Эти самые электронные датчики автоматически определяют, хватит ли свободного места транспортному средству. Водителю остаётся только нажимать на педали газа и тормоза, а рулевым колесом управляет электроника.

Впервые такая система была установлена на Тойоту Приус. Она могла не просто парковать автомобиль параллельно, но и делать это под углом к тротуару. Систему постоянно совершенствовали и постепенно ей нужно было всё меньше и меньше места, чтобы припарковать автомобиль.

Система автопарковки на Тойоте Приус

В 2006 году появился первый в мире робот-парковщик, который мог парковаться без помощи водителя. Такой электроникой снабдили БМВ, но, конечно же, пока экспериментальный и напичканный электроникой. Но уже это лишний раз доказывает, что вскоре роботы станут всё делать вместо человека. Кроме того, пока закон ни одной страны мира не предусматривает положения, которое бы предусматривало движение транспортного средства без водителя, даже если речь идёт только о парковке.

Активный круиз-контроль

Такая электроника даёт водителю комфорт. Нога уже не будет так уставать, как раньше. А продвинутые системы способны не только самостоятельно разгонять автомобиль или тормозить, но и поворачивать в нужную сторону.

Первый автомобиль, который снабдили такой вот системой, — Мицубиси Диамант 1995 года. Его оснастили активным круиз-контролем. Система замеряла расстояние до впереди идущего автомобиля с помощью радара, воздействуя на акселератор и коробку-автомат и сохраняя безопасное расстояние. Активировать тормоза система ещё не умела и о высокой функциональности ещё не было речи.

Мицубиси Диамант 1995 года

В 1998 году придумали систему, которая уже умела тормозить. Назвали её Distronic и установили на Мерседес S-класса. Вначале электроника срабатывала только на скоростях до 30 км/ч. Но впоследствии этот недостаток исправили. На современном Мерседесе S-класса активный круиз-контроль использует различные радары, прекрасно сохраняет дистанцию, наделён стереоскопической камерой для распознания разметки и работает практически на любой скорости. Кроме того, электроника способна давать команды ЭУР, чтобы держаться в полосе, что говорит о беспилотном вождении.

Система автоторможения

Система вначале даёт предупреждение водителю и если тот не реагирует, то электроника делает всё сама.

В первую очередь такая автоматическая система предназначена для сохранения безопасности на дорогах. Какому водителю не знакома ситуация, когда он на доли секунды избежал аварии или столкновении только благодаря мгновенной реакции. А если бы не успел? Именно из-за этого инженерами и была разработана система автоматического торможения.

Основными звеньями системы являются лидар, радар и камера, которая следит за тем, что происходит перед автомобилем. Если насчёт камеры и радара всё понятно, то лидар — это специальный лазер, имеющий низкую интенсивность излучения. Работает система следующим образом: когда возникает риск столкновения, электроника подаёт водителю звуковой либо световой сигналы. И опять же, если водитель никак на это не реагирует, робот берёт управление на себя.

Впервые такими системами оснастили автомобили производители Хонды и Тойоты, затем взяли на вооружение Мерседес, Вольво и другие.

Примечательно, что самые простые системы автоматического торможения с лидаром имеют ограничение скорости до 30 км/ч. Что касается систем, оснащённых телекамерой или радаром, то они функционируют уже на больших скоростях.

На видео — работа системы экстренного торможения на Volvo FH:

Существуют и ещё более продвинутые системы. В частности, Вольво оснастила одной из таких свою модель. Система способна распознавать пешеходов и не реагировать на стоящего человека, который просто ждёт, когда машина проедет, чтобы перейти дорогу. Но стоит отметить, что такая возможность системы подразумевает наличие отменного софта. Как заявляют эксперты, вскоре выйдут системы, которые смогут даже обнаруживать животных, выбегающих на дорогу тёмной ночью из леса.

Вообще, система автоматического торможения и её высокий класс определяются в основном установленными датчиками. Чем лучше тип датчика и программное обеспечение, тем выше класс такой системы. Как и было сказано выше, самой простой считается система автоматического торможения с лидаром, или лазером и низкой интенсивностью излучения. Такой радар способен прощупать пространство впереди себя всего на десять метров. А вот применение телекамер и радаров даёт лучший эффект.

Компания Вольво сегодня работает над тем, чтобы научить систему распознавать пешеходов и в тёмное время суток. Кроме того, инженеры компании пытаются научить систему избегать наезда на крупных животных, например, лосей, чтобы как минимум свести к нулю последствия таких аварий, которые в лесистых местностях России и других стран довольно часты.

Автомобиль-беспилотник

Эти автомобили пока ездят там, где нет никаких препятствий. Но это сегодня уже реальность.

Более или менее удачные прототипы беспилотников, способные самостоятельно ездить по дорогам, известны человечеству уже 30 лет. Как утверждают, сильный импульс к развитию технологий для создания беспилотников дала гонка Darpa Grand Challenge, прошедшая в Соединённых Штатах в 2004 и 2007 годах.

Как и было сказано выше, самым известным беспилотником является гугломобиль, или Google Driverless Car.

Google Driverless Car, или гугломобиль

Если, с одной стороны, человечество и заинтересовано в прогрессе таких технологий, с другой — наблюдается немало преград. В частности, мешают развитию беспилотников законы, которые нужно изменить. Если не кардинально, то хотя бы так, как это сделали в некоторых штатах США, где дали разрешение на проведение экспериментальных работ, а в Германии создаётся даже нормативная база, открывающая дорогу транспортным средствам с различным уровнем автоматизации.

Кроме этого, не стоит забывать, что сегодня миром правит реклама и маркетологи яро, с неистовством эксплуатируют идею «комфорт от вождения». А для создания беспилотника необходимо сосредоточиться на автоматизации управления транспортным средством в тех условиях, где получение удовольствия невозможно. Например, это может быть автомобильный затор или скоростная магистраль.

Подобным проектом можно назвать Sartre — полностью европейский проект, в котором принимают участие Вольво и другие автопроизводители. Цель проекта — создать автомобиль, который бы двигался без вмешательства водителя, пока что в колонне за одним ведущим. Это означает, что вскоре нам представится уникальная возможность наблюдать на автобанах и автострадах, где нет перекрёстков и препятствий, полностью беспилотные автомобили.

Система активного вмешательства при определении опасности

Эта система работает следующим образом. На автомобиль устанавливается специальный радар, сверхчувствительный к опасностям различного рода. Радар взаимодействует с колёсными датчиками, блоком управления и камерами. Таким образом, рассчитывается безопасная дистанция и при опасности столкновения транспортного средства с преградой происходит автоматическое торможение, частично или полностью останавливающее автомобиль.

Примечательна система ещё и тем, что её камеры легко определяют, остался ли автомобиль в пределах полосы или нет. Когда происходит отклонение от курса движения, в салоне раздаётся соответствующий сигнал, на который должен отреагировать водитель, или же автомобиль самостоятельно возвращается на родную полосу. Что касается индикатора объектов в мёртвой зоне, который также является обязательной и важной частью системы, то он сообщает о машинах, которые находятся на соседних полосах и могут быть не видимыми глазу водителя.

Система eCall

Система экстренного вызова Assist Advanced eCall в BMW

Очередная автоматизация, которая вызывает уважение абсолютно всех водителей, ведь система берёт на себя важные задачи. В частности, при попадании автомобиля в занос или при столкновении специальные датчики на кузове транспортного средства подают сигнал экстренного вызова. Блок управления автомобилем автоматически посылает данные о своём местоположении в ближайший диспетчерский пункт, тем самым гарантируя скорую помощь. Такой же сигнал SOS подаётся и машинам, которые находятся поблизости.

Получив экстренный сигнал, сотрудники служб, в свою очередь, пытаются связаться с водителем по телефону через eCall-соединение. Если ответа не следует, на место отправляется бригада спасателей.

Примечательно, что с 2015 года система eCall станет в Европе обязательной к установке на все автомобили, в основном новые.

Объезд пробок — удивительная автоматика

Действительно, умная система, которая сама определит наличие автомобильных заторов и отправит сведения в навигационные устройства в режиме реального времени — это то, о чём так долго мечтали водители транспортных средств крупных городов и мегаполисов. Система работает посредством датчиков, размещённых на улицах, или информации, поступающей с мобильных телефонов. Кроме того, благодаря приложению для смартфона, эти функции могут быть расширены.

Система Car to car communication

Система, которая даёт возможность автомобилям предупреждать друг друга об опасности или аварии. Кроме этого, система позволяет автоматически отправлять данные в диспетчерские службы, выдающие информацию о пробках.

Система Car to car communication предупреждает об опасности

Ещё одним преимуществом системы является то, что машина «Скорой помощи» переключают светофоры, встречающиеся на своём пути, на «зелёную волну» и отправляет предупреждение об этом всем участникам дорожного движения.

Лобовое стекло как монитор

И такое стало возможным в наш высокотехнологичный век. Все сообщения о пробках и предупреждениях, благодаря системе Car to car communication, проецируются на лобовом стекле автомобиля. Это очень удобно для водителя, который уже не будет отвлекаться от вождения. Что касается дополнительного оборудования, то сюда входят такие аппараты:

  • навигатор Garmin HUD;
  • проекционный дисплей Пионер, работающий под управлением Android и iOS, а также другие.

Приведённые выше электронные системы не единственные. Существуют и более продвинутые и сложные электронные роботы, которым люди доверили управление автомобилем.

Автор: Проверенная статья

365cars.ru

Система автоматического управления подвеской автомобиля

Система автоматического управления подвеской позволяет по­высить не только комфортабельность автомобиля для води­теля и пассажиров при езде, но и безопасность движения. Это достигается за счет введения в подвеску исполнительных механизмов, управ­ляемых с помощью электронных устройств, которые изменяют жесткость упругих элементов и сопротивление амортизаторов, что способно уменьшить крен кузова на повороте и его продольный наклон при разгоне и торможении. Разработаны также устройства, обеспечивающие горизонтальное положение кузова при движении по неровным дорогам.

Рассмотрим принцип регулирования сопротивления амортиза­тора, жесткости подвески и высоты кузова на примере одного колеса (рис. 1).

Рис. 1. Схема автоматического регулирования подвески:

1-датчик скорости; 2-датчик ускорения; 3-датчик угловой скорости относительно вертикальной оси; 4-датчик положения кузова автомобил; 5-фильтр; 6-компрессор с приводом; 7-влагоотделитель; 8-электромагнитный клапан; 9-амортизатор; 10, 11-пневмокамеры;12-электродвигатель; 13-кузов

Упругий элемент расположен между кузовом автомобиля 13 и нижним рычагом подвески. Параллельно пружине подвески уста­новлена основная пневмокамера, внутри которой (иногда вне ее) находится амортизатор 9. В кузове 13, выше основной пневмокамеры 10, расположена вспомогательная камера 11. Обе камеры соединены между собой перепускным клапаном, проходное сечение которого регулируется электромагнитным клапаном. Этот клапан связан с компрессором 6 подпитки камер воздухом через влагоотделитель 7.

Атмосферный воздух поступает в компрессор 6 через фильтр 5. Регулирование жесткости подвески достигается изменением производительности перепускного клапана, а изменение высоты кузова осуществляется подкачиванием пневмокамеры от компрес­сора или выпуском воздуха из нее в атмосферу, что позволяет растягивать или сжимать основную пневмокамеру 10.

Сопротивление амортизаторов регулируется изменением про­ходного сечения перепускных отверстий в поршне. Для этого в поршень вмонтирован поворотный золотник. Золотник поворачи­вается стержнем, соединенным с электродвигателем. ЭБУ дает ко­манду электродвигателю повернуть золотник на необходимый угол, тем самым изменяя сопротивление амортизаторов.

Электронный блок управления силой сопротивления амортиза­торов выполняется на цифровых схемах (рис. 2). Все входные сигналы являются цифровыми и поступают в микропроцессор че­рез схемы входной обработки, формирующие сигналы. Выходные сигналы ЭБУ подаются на исполнительные механизмы управления режимами работы амортизаторов и на индикаторы, показывающие уровень силы сопротивления, через схемы выходной обработки от микропроцессора.

          Рис. 2. Структурная схема ЭБУ силой сопротивления амортизаторов

В схемах управления исполнительными механизмами предусматриваются средства обеспечения работоспособности при появлении ошибок от скачков напряжения и защита от перегрузки по току.

Источники питания преобразуют напряжение бортовой сети в напряжение 5 В, необходимое для работы интегральных схем. Выполнение основной программы занимает приблизительно 4 мс. За это время микропроцессор обрабатывает входные сигналы от датчиков и подает выходные сигналы на исполнительные меха­низмы.

Существует 2 вида регулирования подвески:

  • с помощью электромагнитных клапанов;
  • с помощью магнитно-реологической жидкости;

 

Рис. 3. Схема регулирования пневмоподвески с помощью электромагнитных клапанов

Рис. 4. Подвеска с изменяемыми характеристиками с помощью электромагнитных клапанов

                        Рис. 5. Описание принципа регулирования с помощью магнитно-реологической жидкости

При регулировании с помощью электромагнитного регулировочного клапана (рис. 3. а и рис. 4) изменяется его проходное сечение в зависимости от величины воздействующего тока. Чем больше ток, тем меньше проходное сечение клапана и соответственно выше степень демпфирования амортизатора (жесткая подвеска).

С другой стороны, чем меньше ток, тем больше проходное сечение клапана, ниже степень демпфирования (мягкая подвеска). Регулировочный клапан устанавливается на каждый амортизатор и может располагаться внутри или снаружи амортизатора.

Магнитно-реологическая жидкость включает металлические частицы, которые при воздействии магнитного поля выстраиваются вдоль его линий. В амортизаторе (рис. 5), заполненном магнитно-реологической жидкостью, отсутствуют традиционные клапаны. Вместо них в поршне имеются каналы, через которые свободно проходит жидкость. В поршень также встроены электромагнитные катушки. При подаче на катушки напряжения частицы магнитно-реологической жидкости выстраиваются по линиям магнитного поля и создают сопротивление движению жидкости по каналам, чем достигается увеличение степени демпфирования (жесткости подвески).

www.autoscience.ru

Принципы работы системы автоматического управления автомобилем | Серебряный Дождь

Принципы работы системы автоматического управления автомобилем

Выпуски программы «Тест-драйв онлайн» / 27 июля 2017

Сегодня поступает масса информации о том, что тот или иной производитель готовит автомобиль с системой автопилотирования. Но как же все это работает? Какие системы необходимо интегрировать в тело машины, чтобы она начала двигаться самостоятельно? Давайте разбираться вместе.

Начнем с того, что автоматизированные транспортные средства опираются не только на данные, полученные с датчиков. Им требуется информация в реальном времени о трафике, пробках и ДТП. Получить подобные сведения можно только путем подключения автомобиля к серверу. Для этой цели была разработана система Connected Horizon, которая не только обеспечивает динамический обзор маршрута, но и адаптируется под условия вождения.

Например, подключенный к серверу автомобиль знает об опасных участках дороги, которые скрываются за предстоящим слепым поворотом, и может заранее сбавить скорость. Рулевое управление: с одной стороны машина едет сама, с другой – пока до авто без «баранки» мы не доросли и поэтому водителю всегда будет предоставляться возможность пилотировать ее самостоятельно.

Динамическая система стабилизации курсовой устойчивости (ESP) работает непосредственно с тормозной системой и управляет тягой мотора. Так вот, в автоматизированном транспортном средстве обе эти системы должны работать самостоятельно и независимо осуществлять торможение автомобиля без вмешательства водителя. Вообще для создания автономного транспорта необходимо полностью изменить систему взаимодействия «человек-машина», коммуницировать иначе.

Именно поэтому, помимо привычных систем активной безопасности, все автономники должны быть оснащены лазерными, радиолокационными, ультразвуковыми и видео-датчиками. Они должны в мгновение ока проанализировать и просчитать возможные варианты. Да, пока о системе искусственного автомобильного интеллекта речи не идет. Мы попросту не в состоянии его создать, но уже сегодня есть масса примеров того, как автомобиль передвигается самостоятельно.

Кстати, подобные машины более безопасны, у них нет эмоций и, соответственно, отсутствует человеческий фактор.

www.silver.ru


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости