С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Датчика температуры устройство


Принцип работы и особенности датчиков температуры, классификация и область применения

Современное производство просто немыслимо без автоматизации различных технологических процессов. Начиная от атомной станции и заканчивая автомобилями, везде можно обнаружить элементы автоматического контроля и регулирования необходимых параметров. Давление, угловая и линейная скорости, температура и многие другие параметры необходимо контролировать для более эффективной работы всего производства или машины.

Среди общего многообразия контролируемых параметров около половины занимает измерение и контроль температуры. Причём одной из наиболее важных деталей всей системы является датчик. Исходя из того, что условия и диапазоны температур могут сильно варьироваться, датчики и первичные преобразователи исполняются с различными свойствами и качествами в зависимости от технологических требований.

Сам по себе датчик измерения температуры является устройством, способным получать измеряемую величину и преобразовывать её в сигнал для последующей обработки и регулировании контролирующим прибором. Проще говоря, он является преобразователем одной величины (температуры) в другую величину (электрический ток, сопротивление), которую способен обработать прибор (к примеру, регулятор температуры) и на основании полученных данных выполнить действия, для которых создаётся сам этот прибор. К примеру, при достижении температуры выше заданной прибор может отключить исполнительный механизм для остановки источника (среды) нагрева.

Виды датчиков температуры

Ввиду того что условия и диапазоны измерений для разных задач могут сильно отличаться, а требования к измерению различных температурных параметров быть разными, соответственно, и для выполнения тех или иных задач термопреобразователь должен соответствовать этим условиям и определённым требованиям. Поэтому они могут быть разными и использовать в работе различные свойства материалов. Таким образом, датчики бывают:

  • Полупроводниковые;
  • Терморезистивные;
  • Акустические;
  • Термоэлектрические;
  • Пьезоэлектрические;
  • Пирометры.

Коротко опишем особенности каждого из них, чтобы можно было представлять, в каких случаях необходимо использовать тот или иной прибор.

Полупроводниковые термоэлектрические

Термопреобразователи этого типа востребованы в производствах, так как являются недорогими и довольно точными приборами с низкой погрешностью. Под воздействием температуры такой датчик регистрирует изменения в свойствах p-n перехода. Здесь может использоваться практически любой диод или же биполярный транзистор. Высокая точность полупроводниковых термодатчиков достигается за счёт зависимости напряжения на транзисторе от абсолютной температуры.

Терморезистивные термоэлектрические преобразователи

Основными положительными сторонами подобных термодатчиков является их долговечность, стабильность и высокая чувствительность. Они прекрасно вписываются практически в любую схему.

Работа таких термопреобразователей основывается на изменении сопротивления под действием температуры на проводник или полупроводник. Проще говоря, они содержат в своей конструкции терморезистор, который реагирует на изменение замеряемой среды.

В зависимости от материала, используемого в терморезистивных термодатчиках, их разделяют на:

  1. Кремниевые резистивные, которые отличаются долговременной стабильностью и высокой точностью.
  2. Резистивные детекторы температуры, отличающиеся высокой стабильностью, прочностью и точностью. В основе их работы заложена способность металлов изменять своё сопротивление при воздействии температуры. Чаще в таких датчиках используют платину или медь, а при контроле особо высоких температур — вольфрам. Единственным их недостатком является относительно высокая стоимость.
  3. Работа термисторов основана на использовании металлооксидных соединений. Применяют их лишь для замеров абсолютных температур. Основным из минусов можно выделить необходимость калибровки и недолговечность.

Акустические бесконтактные устройства

Такой тип температурного датчика применяется преимущественно для измерения высоких температур. Принцип действия их основан на изменении характеристик звука при различных температурах. Состоит такой термодатчик из приёмника и излучателя. Звук, проходя через исследуемую среду, попадает в приёмник, где фиксируются его параметры, и на их основе определяется температура.

Акустические термодатчики часто используются в медицине и там, где невозможно измерить температуру контактными способами. Одним из основных их недостатков является низкая точность измеряемых температур и высокая погрешность вследствие дополнительных особенностей.

Термоэлектрические датчики

Термоэлектрические датчики, или, проще говоря, термопары отличаются широким спектром измеряемых показателей — от -200 до 2200 градусов Цельсия. При этом их возможности зависят от использованных материалов. Так, термопары из неблагородных металлов позволяют измерять температуру до 1100 °C, с благородными до 1600 °C, а для замера особо высоких терморежимов используются термопары с тугоплавкими металлами типа вольфрама.

Принцип работы термоэлектрических датчиков основан на эффекте Зеебека, т. е. используются спаи разнородных металлов, образующих замкнутый контур, в котором возникает электрический ток, когда места спаев имеют различную температуру. Состоит термопара из двух концов: рабочий и свободный. Первый погружается непосредственно в рабочую среду, а второй нет. Таким образом, возникает разность температур, что отображается в виде выходного напряжения, которое фиксируется мультивольтметром, зачастую входящим в комплект с термоэлектрическим датчиком.

Пьезоэлектрические кварцевые приборы

Принцип работы датчика температуры пьезоэлектрического основан на использовании кварцевого пьезорезонатора. Используемый в нём пьезоматериал исполняет роль резонатора. Когда на него подаётся электрический ток, то этот материал начинает колебаться при воздействии разных терморежимов, и частота колебаний также изменяется, что и положено в основу пьезоэлектрических датчиков.

Бесконтактные термопреобразователи пирометры

Бесконтактные датчики, способные фиксировать тепловое излучение от нагретых тел, называются пирометрами. Удобство подобных приборов заключается в том, что нет необходимости помещать его непосредственно в среду. Однако без прямого контакта точность их показаний относительно низка, ведь здесь могут присутствовать побочные явления, влияющие на показания.

Существует три типа пирометров:

  1. Интерферометрические пирометры испускают два луча, которые проходят один через среду, а второй является контрольным. Два этих луча попадают на кремниевый чувствительный элемент, после чего сравнивается преломление и длина лучей, непосредственно зависящие от нагрева среды.
  2. Флуоресцентные термодатчики работают по более сложному принципу: на поверхность, где необходимо замерить количество тепла, наносятся компоненты на основе фосфора. После этого объект подвергается ультрафиолетовому импульсному излучению, в результате чего происходят определённые реакции, а излучение подвергается анализу.
  3. Датчики, которые содержат растворы, способные менять окраску под воздействием температур. Хлорид кобальта, применяемый в подобных пирометрах, при контакте с измеряемой средой способен изменять цветовой спектр в зависимости от степени нагрева. Таким образом, величина света, проходящего через раствор, позволяет измерять необходимые термопараметры.

Правила выбора

Все вышеперечисленные датчики превосходно выполняют свои функции в заданных пределах. Однако нужно понимать, что выбирать и использовать их необходимо исходя из требований в конкретно взятом случае.

Поэтому при выборе того или иного термопреобразователя стоит уделять внимание следующим моментам:

  1. Величина температурного диапазона.
  2. Возможность погрузить датчик в измеряемую среду. Если такая возможность отсутствует, то стоит прибегнуть к помощи пирометров или акустических датчиков.
  3. Условия измерения являются одним из наиболее важных моментов при выборе датчика. Здесь стоит учитывать не только агрессивность среды, но и такие параметры, как: давление, влажность и т. д. Поэтому выбирать стоит либо бесконтактные датчики, либо в коррозиестойких корпусах.
  4. Природа выходного сигнала всегда также должна учитываться. Ведь одни термопреобразователи могут сразу пересчитать сигнал в градусы, а другие выдают его лишь в величине тока.
  5. Некоторые датчики довольно нестабильны и недолговечны, что также стоит брать во внимание. Поэтому если требуется долгая работа без замены и калибровки, то этот нюанс также должен быть учтён.
  6. Нелишним будет при выборе датчика под определённые потребности обращать внимание и на время срабатывания, разрешение и погрешность, рабочее напряжение питания, тип корпуса.

Учтя все вышеперечисленные нюансы, можно подобрать датчик, полностью соответствующий по своим характеристикам в отдельно взятой ситуации и для конкретно поставленных задач.

Температурный датчик: принцип действия и сфера применения

Нынешнее оборудование, автоматика и автомобилестроение вряд ли обойдутся без всякого рода контроллеров. К такому виду устройств можно отнести и термодатчики, сфера применения которых неограниченна.

Содержание статьи

Термодатчик – это механизм, фиксирующий температуру среды, в которой он находится и передающий ее на приборную панель либо в блок управления. Наиболее часто подобные устройства идут в паре с блоком управления, ведь помимо того, что датчик сообщает показатели, их еще нужно обработать и произвести необходимые манипуляции. Большинство современных термодатчиков имеют электронное наполнение, их принцип действия основывается на передаче электрических импульсов от датчика к фиксирующему прибору. Конструктивно датчики можно разделить на несколько типов.1. Терморезистивный датчик. Подобные устройства работают по принципу изменения электросопротивления проводника при возникновении колебаний температуры. Эти датчики просты в применении, они очень надежны, чувствительны, более точны.2. Полупроводниковые термодатчики устроены по принципу реагирования на трансформацию характеристик (р-n) перехода под воздействием температуры. Серия таких датчиков очень проста в своей конструкции и имеет отличное соотношение цены и долговечности.3. Термоэлектрические датчики, или как их еще называют термопары. Этот тип датчиков работает на эффекте разности температуры пары проводников, которые находятся в разных средах. Благодаря этому, в замкнутой цепи этой пары проводников возникает импульс, датчики сигнализируют о смене температуры относительно друг друга. Эти устройства не дают такой точности, как их вышеописанные коллеги, и конструктивно имеют более громоздкий механизм.4. Пирометры. Это датчики бесконтактного типа, они фиксируют температуру близ находящегося предмета. У этого вида приборов большой плюс в том, что они могут работать на расстоянии от механизма, в котором необходимо зафиксировать показатели температур.5. Датчики акустические. Принцип работы основывается на изменении скорости звука в атмосфере при изменении температуры среды, в которой находиться датчик. Такие устройства применяют в средах, где невозможно использование контактных датчиков температуры.6. Пьезоэлектрические датчики. Смысл устройства следующий: на кварцевую основу, из которой состоит сам датчик, подают определенную серию импульсов, таким образом, с изменением температуры этот материал имеет разную частоту расширения.

Все виды термодатчиков можно встретить в повседневной жизни. Датчиками оборудуют лифты многоэтажных домов, чтобы не перегреть двигатель лифта в случае возникновения нагрузки. Используют в автомобилях для контроля рабочей температуры мотора и недопущения его закипания. В домашних холодильниках датчик работает в паре с блоком управления, который дает команду включать и выключать агрегат холодильника в зависимости от температуры, фиксируемой датчиком. И еще много каких примеров существует, где в работе оборудования или прибора участвует подобный механизм. Данные устройства в значительной мере облегчают жизнь человеку, только мало кто об этом думает. Приятно, когда машина делает какую-то операцию без участия человека.

Распечатать

Температурный датчик: принцип действия и сфера применения

КОНТРОЛЬ И УПРАВЛЕНИЕ ТЕМПЕРАТУРОЙ

ДАТЧИКИ - БЛОКИ

Системы контроля и регулирования температуры применяются практически во всех областях человеческой деятельности. Это разнообразные технологические процессы в промышленном производстве, сельском хозяйстве, на транспорте.

Управление температурой лежит в основе систем отопления, кондиционирования, криогенных установок и многого другого.

Несмотря на то, что схемные решения, элементная база и материалы, применяемые при построении приборов управления и контроля температурного режима весьма разнообразны, их объединяет общий принцип функционирования.

Структурную схему этих устройств можно представить в виде нескольких, взаимодействующих между собой функциональных блоков:

  • реагирующий орган (датчик температуры);
  • блок контроля и управления;
  • исполнительное устройство.

По своей сути, схемы автоматического контроля и регулировки температурного режима представляют собой системы с обратной связью, роль которой играет сигнал температурного датчика. Получая от него информацию, схема контроля и управления, при необходимости посылает управляющий импульс исполнительному устройству. В результате, запускается некий процесс, влияющий на регулируемый параметр.

В качестве примера, рассмотрим алгоритм работы регулятора температуры воздуха в помещении, управляющего электрическим обогревателем. Такой прибор может обеспечивать регулировку температурного режима внутри дома, дачи, теплицы или погреба для хранения овощей.

Такие устройства иногда выполняются в виде прибора, располагающегося непосредственно на розетке и имеющего контакты для подключения электрического обогревателя.

В компактном корпусе прибора регулировки и контроля располагается температурный датчик (существуют варианты исполнения с выносным датчиком), блок управления и исполнительный орган, роль которого выполняет электромагнитное реле или бесконтактный выключатель.

На корпусе прибора установлен регулятор со шкалой, проградуированной в градусах. С его помощью устанавливается требуемая температура помещения.

В случае, если температура воздуха меньше установленной, в блоке управления возникает сигнал рассогласования, приводящий к срабатыванию реле или открыванию ключа на симисторе. Включившийся нагреватель поднимает температуру помещения, и когда она достигает установленной величины, происходит возврат реле или запирание электронного ключа.

Таким образом, данное устройство работает по принципу двухпозиционного реле, осуществляющего температурную регулировку.

Между температурными значениями срабатывания и отпускания реле существует разбежка, обычно составляющая от 10С до 20С, называемая гистерезисом. Она необходима для придания системе инерционности и обеспечения устойчивой работы.

ДАТЧИКИ ТЕМПЕРАТУРЫ

Датчики являются неотъемлемой частью систем измерения, контроля и регулировки нагревательных режимов различных объектов. Эти приборы осуществляют преобразование текущего температурного показателя в некоторый электрический сигнал, доступный для восприятия и дальнейшей обработки блоком управления.

Основой конструкции датчика температуры является чувствительный элемент, так или иначе реагирующий на изменение степени нагрева объекта контроля. К основным видам чувствительных элементов относятся терморезисторы и термопары. Реже встречаются устройства, содержащие кварцевые генераторы, частота которых зависит от степени их нагрева.

Использование терморезисторов в схемах измерения и регулировки возможно благодаря свойству полупроводниковых элементов изменять величину электрического сопротивления в зависимости от температуры. Терморезисторы (термисторы) обладают стабильной характеристикой, то есть, каждому температурному значению соответствует определённое значение электрического сопротивления.

Применение термопар использует термоэлектрический эффект, то есть, свойство некоторых пар электропроводящих материалов генерировать электродвижущую силу (напряжение) под температурным воздействием.

Конструкции датчиков, как правило, кроме чувствительного элемента, содержат схемы преобразователей сигналов. В зависимости от вида сигнала, поступающего в схему контроля и управления, преобразователи подразделяются на следующие типы:

  • аналоговые;
  • цифровые;
  • комбинированные.

Аналоговый принцип основан на соответствии уровня нагрева значению некоторого электрического параметра. Например, при нагревании или охлаждении воздуха, датчик может выдавать электрический сигнал с изменяющимся током, напряжением или частотой.

Цифровой формат подразумевает передачу двоичного кода, то есть, чередование импульсов одинаковой амплитуды и пауз между ними. Очень часто в цифровых преобразователях датчиков применяется широтно - импульсная модуляция (ШИМ).

Её принцип заключается в том, что изменение некоторой аналоговой величины вызывает изменение скважности прямоугольных импульсов одинаковой амплитуды. Для этой цели применяются специальные микросхемы ШИМ – контроллеры.

Преобразователи комбинированного типа выдают на выходе как аналоговый, так и цифровой сигнал. Это делается для того, чтобы сделать датчик более универсальным, способным работать с различными блоками регулировки и управления.

По типу размещения, датчики могут быть встроенными, то есть, располагаться в одном корпусе со схемой контроля и управления, либо выносными, соединяющимися кабелем с основным блоком. Встроенный вариант обычно используется в регуляторах температуры воздуха в помещении.

Если осуществляется контроль состояния жидкости или газа, имеющего высокую температуру или давление, применяются выносные датчики соответствующего исполнения.

Длина соединительного кабеля, как правило, оказывает влияние на точность работы системы в целом. Часто датчики, поставляемые в комплекте с блоками управления, уже присоединены к заводскому кабелю определённой длины. Это означает, что измеритель температуры прошёл тарировку именно с этим кабелем, то есть, в системе компенсированы погрешности, вносимые дополнительным сопротивлением.

Кроме искажений, вносимых в работу прибора длинным соединительным кабелем, на производственных объектах кабельные связи могут испытывать электромагнитные наводки. Обычно с этим можно бороться, экранируя соединительный кабель.

При поставке датчиков отдельно от блока, когда заранее не известна длина связи, может быть предусмотрена возможность тарировка на месте, после монтажа кабеля и датчика.

В начало

УСТРОЙСТВА И БЛОКИ РЕГУЛИРОВКИ ТЕМПЕРАТУРЫ

Сигнал с температурного датчика поступает в блок регулировки и управления. После обработки входящего сигнала, схема, осуществляющая контроль и регулировку, формирует управляющий сигнал исполнительному устройству.

Исполнительное устройство коммутирует различные приборы, работа которых влияет на температурный режим. В самом простом варианте это электрические нагреватели. Чаще всего в роли исполнительного устройства выступает электромагнитное реле или магнитный пускатель.

Несмотря на развитие электронной элементной базы, обычные магнитные пускатели не теряют популярности в силу нескольких причин:

  • простота и наглядность схемы регулировки;
  • надёжная гальваническая развязка цепей управления и силовой разводки;
  • возможность коммутировать значительные токи.

Из недостатков следует отметить наличие подвижных частей и механических контактных групп. Однако при правильном подборе оборудования и соответствии коммутируемых токов возможностям прибора, пускатель служит надёжно достаточно длительное время.

К главным техническим параметрам устройств контроля и регулировки относятся:

  • напряжение питания;
  • ток коммутируемой нагрузки;
  • диапазон изменения регулируемой величины.

При выборе устройства регулирования и контроля, необходимо рассчитать потребную мощность нагревательных приборов, достаточную для требуемого прогрева помещения. Суммарный ток обогревателей не должен превышать максимально допустимое значение, указанное в паспорте регулятора.

При осуществлении регулировки систем тёплых полов следует сопоставлять значение потребляемого ими тока с возможностями регулятора температуры.

В начало 

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Датчики температуры

Многие системы Умный дом используют в своем составе различные датчики температуры. Применение данного оборудования необходимо во всех случаях, когда рабочие параметры системы тем или иным образом зависят от температурных факторов. Важно, чтобы тип и характеристики устройств соответствовали требованиям.

Основные виды

На сегодняшний день выпускаются следующие виды температурных датчиков:

  • Термисторы. По сути, данный тип датчиков – это термометры сопротивления, изготовленные на основе смешанных оксидов переходных металлов. Термисторы делятся на два основных типа – PTC (с положительным коэффициентом) и NTC(с отрицательным коэффициентом температурного сопротивления). Наиболее распространены температурные датчики NTC. Термисторы РТС применяются исключительно в узких диапазонах температур (всего несколько градусов), поэтому, их использование чаще ограничивается системами контроля и сигнализации. В целом, термометры очень чувствительны к измеряемой температуре, но, к сожалению, этого нельзя сказать о линейности выходного сигнала.
  • Термопары. Данное оборудование является идеальным решением для измерения температуры в максимально широком диапазоне (до +2300°С). Оно отличается высокой точностью и вопроизводимостью. Но, важно отметить: термопары нуждаются в установке схем усиления сигнала, что необходимо для его последующей обработки.
  • Терморезистивные датчики.  Принцип работы терморезистивных датчиков температуры (RTDs - Resistance Temperature Devices) основан на пропускании через них электрического тока.
  • Полупроводниковые датчики. Современные полупроводниковые датчики выполняют свои функции в широком диапазоне температур. Они имеют высокую точность. Устройства оснащены встроенной схемой усиления сигнала, что позволяет настраивать оборудование на требуемую температурную зависимость.

Согласно характеристикам и области применения, выделяют датчики температуры воздуха, жидкости и т.д. Кроме этого, датчик температуры воздуха может быть наружным (уличным) или внутренним (комнатным, устанавливаемым в помещениях).

Различают датчики температуры и по материалу исполнения чувствительного элемента, а также, типу корпусирования:

  • датчики с платиновым чувствительным элементом;
  • корпусированные датчики;
  • датчики с полупроводниковым чувствительным элементом.

Основные производители температурных датчиков для систем автоматизации умный дом – Siemens SBT, REGIN, S+S REGELTECHNIK, HONEYWELL и другие.

Характеристики

Датчики температуры наружного воздуха, жидкости (воды), комнатные устройства и т.д. имеют единый перечень наиболее важных характеристик. Планируя купить датчик температуры, следует обратить внимание на следующие параметры:

  • точность показателей (возможная/допускаемая погрешность);
  • диапазон измеряемых температур;
  • ориентировочный (гарантий) срок службы;
  • стандартизация характеристик (возможность взаимозаменяемости датчиков);
  • стойкость к температурным перегрузкам;
  • линейность выходных характеристик;
  • время отклика.

Будь то датчик наружной температуры воздуха или устройство, измеряющее параметры жидкости, данные характеристики должны обязательно учитываться при выборе и установке оборудования. В некоторых случаях можно предпочесть минимальное время отклика, в других – первостепенную роль играет широкий диапазон температур.


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости