С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Головка блока цилиндров эскиз


Блок и головка цилиндров

Всостав кривошипно-шатунного механизма двигателя входят две группы деталей: неподвижные и подвижные.

К неподвижным деталям относятся: блок цилиндров, служащий остовом двигателя, картер маховика, цилиндры, головка блока или головка цилиндров и поддон картера. Подвижными деталями являются поршни с кольцами и поршневыми пальцами, шатун, коленчатый вал, маховик.

Блок - картер. У двигателей КамАЗ-740.11, ЯМЗ-238 и УМЗ-417 блок - картер представляет собой единую отливку, объединяющую блок цилиндров и верхнюю половину картера.

У V-образных двигателей КамАЗ-740.11 (рисунок 3.1) и ЯМЗ-238 в верхней части блока цилиндров имеются две обработанные поверхности (плоскости), на которые устанавливаются головки. Нижняя часть блока заканчивается обработанным фланцем для присоединения смазочной емкости.

В средней части блока цилиндров имеются отверстия для установки подшипников скольжения под опорные шейки распределительного вала. Плоскость разъема блока может проходить по оси коленчатого вала или быть смещенной относительно нее вниз. К нижней части блок-картера крепится стальная штампованная смазочная емкость, служащий резервуаром для масла. По каналам в блоке масло из смазочной емкости подается к трущимся деталям двигателя.

Блоки цилиндров двигателей КамАЗ-740.11 и ЯМЗ-238 отлиты из легированного серого чугуна заодно с верхней частью картера. Они имеют обработанные посадочные отверстия для гильз цилиндров, а на поверхностях, сопрягаемых с головками, имеются отверстия для подачи охлаждающей жидкости из водяной рубашки в головки блока цилиндров.

Для КамАЗ-740.11 левый ряд цилиндров смещен относительно правого вперед на 29,5 мм. Для ЯМЗ-238 наоборот правый по отношению к левому на 35 мм, что вызвано установкой на одной шатунной шейке коленчатого вала двух шатунов.

Картерная часть блока связана с крышками коренных подшипников коренными и стяжными болтами. Центрирование крышек коренных подшипников производится горизонтальными штифтами, которые запрессованы на стыке между блоком и крышками, но большей частью входящими в блок для предотвращения их выпадения при снятии крышек.

Кроме того, крышка пятой коренной опоры центрируется в продольном направлении двумя вертикальными штифтами, обеспечивающими точность совпадения расточек под упорные полукольца коленчатого вала на блоке и крышках.

Расточка блока цилиндров под вкладыши коренных подшипников производится в сборе с крышками, поэтому крышки коренных подшипников не взаимозаменяемые и устанавливаются в строго определенном положении. Они изготовлены из высокопрочного чугуна. Крепление крышек осуществляется с помощью вертикальных и горизонтальных стяжных болтов, которые затягиваются с регламентированным моментом. Для двигателя КамАЗ-740.11 болты крепления с моментом затяжки 275-295 Н∙м (28-30 кгс∙м), а стяжные болты с моментом затяжки 147-167 Н∙м (15-16 кгс∙м). На каждой крышке нанесен порядковый номер опоры, нумерация которых начинается с переднего торца блока. Для двигателя ЯМЗ-238, вертикальные болты затягиваются с моментом 425-455 Н∙м (43-47 кгс∙м), а горизонтальные – 97-117 Н∙м (10-12 кгс∙м). Крышки также не взаимозаменяемые, каждая из них имеет свой номер.

На двигателе КамАЗ-740.11 спереди к блоку крепится крышка, закрывающая гидромуфту привода вентилятора. Сзади – картер маховика, который служит крышкой механизма привода агрегатов, расположенного на заднем торце блока. На картере маховика справа размещен фиксатор, применяемый для установки угла опережения впрыскивания топлива и регулирования тепловых зазоров в клапанном механизме. Ручка фиксатора при эксплуатации установлена в верхнем положении. В нижнее положение ее устанавливают при регулировочных работах, при этом фиксатор находится в зацеплении с маховиком, а поршень первого цилиндра – в ВМТ на такте сжатия.

На двигателе ЯМЗ-238 к передней части блока цилиндров крепится крышка, закрывающая шестерни распределения, а к задней плоскости блока присоединен картер сцепления. На правой боковой стенке блока цилиндров имеются два обработанных кронштейна для крепления стартера.

1 – блок цилиндров; 2 – крышка коренного подшипника коленчатого вала; 3 – болт крепления крышки; 4 – болт стяжной крепления крышки

Рисунок 3.1 - Блок цилиндров V-образного двигателя

На рядном двигателе УМЗ-417 блок цилиндров выполнен из алюминиевого сплава высокой прочности. К передней части блока цилиндров крепится крышка, закрывающая распределительные шестерни, а к задней плоскости блока присоединен картер сцепления. В картерной части блока расположены пять постелей коренных подшипников коленчатого вала и пять опор шеек распределительного вала. Крышки не взаимозаменяемые, каждая из них имеет свой номер.

Гильзы цилиндров. На двигателях установлены гильзы «мокрого» типа, легкосъемные, изготовлены из специального чугуна, объемно закалены для повышения износостойкости. Зеркало гильзы обработано хонингованием.

Верхняя часть гильзы уплотнена в результате зажима верхнего фланца гильзы между блоком и головкой через прокладку. В соединении «гильза – блок цилиндров» водяная полость уплотнена резиновыми кольцами на КамАЗ-740.11, ЯМЗ-238 и кольцевой прокладке из маслостойкой резины на УМЗ-417. В верхней части кольцо установлено под бурт в проточку гильзы, а в нижней - в расточки блока.

Преимущественное применение в двигателях мокрых гильз связано с тем, что они обеспечивают лучший отвод тепла. Это повышает работоспособность и срок службы деталей цилиндропоршневой группы.

Головки цилиндров КамАЗ-740.11 (рисунок 3.2) отдельные на каждый цилиндр, изготовлены из алюминиевого сплава, для охлаждения имеют полость, сообщающуюся с полостью охлаждения блока.

Каждая головка цилиндра устанавливается на два направляющих штифтах, запрессованных в блок цилиндров, и крепится четырьмя болтами 3 из легированной стали. Один из направляющих штифтов одновременно служит втулкой для подачи масла к коромыслам клапанов. Направляющий штифт уплотнен резиновым кольцом. В головке выполнено отверстие слива моторного масла из-под клапанной крышки в штанговую полость. Окна впускного и выпускного каналов расположены на противоположных сторонах головки цилиндров.

1 – головка цилиндра; 2 – прокладка крышки головки цилиндра; 3 – болт крепления головки; 4 – крышка головки цилиндра; 5 – болт крепления крышки; 6 – прокладка-заполнитель; 7 – прокладка уплотнительная головки цилиндра

Рисунок 3.2 - Головка цилиндра с клапанами в сборе двигателя КамАЗ-740.11

Стык «головка цилиндров – гильза» (газовый стык) – беспрокладочный (рисунок 3.3). В расточенную канавку на нижней плоскости головки запрессовано стальное уплотнительное кольцо 3. Посредством этого кольца головка цилиндра устанавливается на бурт гильзы. Герметичность уплотнения обеспечивается высокой точностью обработки сопрягаемых поверхностей уплотнительного кольца и гильзы цилиндра 5. Для уменьшения вредных объемов в газовом стыке установлена фторопластовая прокладка-заполнитель 4. Применение прокладки-заполнителя снижает удельный расход топлива и дымность отработавших газов.

1 – головка цилиндра; 2 – кольцо уплотнительное перепуска охлаждающей жидкости; 3 – кольцо газового стыка; 4 – прокладка-заполнитель; 5 – гильза цилиндра; 6 – кольцо уплотнительное; 7 – прокладка уплотнительная; 8 – блок цилиндров; 9 – экран

Рисунок 3.3 - Газовый стык

Для уплотнения перепускных каналов охлаждающей жидкости в отверстия днища головки установлены уплотнительные кольца 2 из силиконовой резины.

Пространство между головкой и блоком, отверстия стока моторного масла и штанговые отверстия уплотнены прокладкой головки цилиндра 7 из термостойкой резины. На прокладке дополнительно выполнены уплотнительные бурт втулки подачи масла и канавка слива масла в штанговые отверстия.

Каждая головка цилиндров закрывается крышкой головки цилиндров 4 (рисунок 3.2) и крепится болтом 5.

В отличие от двигателя КамАЗ-740.11 на ЯМЗ-238 головки общие для каждого ряда цилиндров отлиты из серого чугуна. Устанавливаются на шпильки и крепятся гайками через сталеасбестовую прокладку. Сверху каждая головка закрывается крышкой через резиновую маслостойкую прокладку (рисунок 3.4).

1 – головка цилиндров; 2 – прокладка крышки головки цилиндра; 3 – гайка крепления головки; 4 – крышка головки цилиндров; 5 – барашки крепления крышки; 6 – шпилька крепления головки; 7 – прокладка головки цилиндра; 8 – седло клапана; 9 – шайба; 10 – шпилька впускного коллектора; 11 – пробка заливной горловины

Рисунок 3.4 - Головка цилиндров двигателя ЯМЗ-238

Каждая головка является общей для четырех цилиндров. В верхнюю часть головки запрессованы направляющие втулки клапанов. У каждого цилиндра головка крепится шестью равномерно расположенными шпильками 6. В нижней части головки выполнены отверстия для запрессовки седел клапанов. На верхней плоскости головки размещены клапаны с пружинами, коромысла клапанов со стойками, а также латунные стаканы под форсунки. Сверху головка цилиндров закрыта стальной штампованной крышкой 4, которая крепится к головке барашками 5. Уплотнение между крышкой и головкой обеспечивается прокладкой 2. На крышке имеется закрываемая пробкой 11 горловина для заливки в картер масла.

На двигателе УМЗ-417 (рисунок 3.5) головка выполнена общей для всех цилиндров. В ней размещены камеры сгорания, в которых установлены впускные и выпускные клапаны, свечи зажигания. На головке цилиндров крепятся детали и узлы привода клапанного механизма. Головка блока цилиндров отлита из алюминиевого сплава со вставными седлами и направляющими втулками клапанов. Между блоком и головкой установлена прокладка из асбестового полотна, пропитанного графитом и армированного металлическим каркасом. Чтобы избежать прилипания к блоку и головке, прокладку перед установкой на место натирают с обеих сторон порошком графита. От осевого перемещения втулка впускного клапана удерживается стопорным кольцом, входящим в канавку во втулке, а втулка выпускного клапана удерживается в головке в результате натяга.

1 – головка цилиндров; 2 – прокладка крышки головки цилиндра; 3 – гайка крепления головки; 4 – крышка головки цилиндров; 5 – гайки крепления крышки; 6 – пробка заливной горловины; 7 – прокладка головки цилиндра; 8 – направляющая втулка клапанов

Рисунок 3.5 - Головка цилиндров двигателя УМЗ-417

Особое внимание необходимо обратить на последовательность затяжки гаек и болтов крепления головок блока цилиндров. На двигателях КамАЗ-740.11, ЯМЗ-238 и УМЗ-417 затяжку болтов и гаек проводят в последовательности, указанной на рисунке 3.6.

а)

 
 

б)

в)

а – двигателей УМЗ-417; б – ЯМЗ-238; в – КамАЗ-740.11

Рисунок 3.6 - Последовательность затяжки гаек (болтов) крепления головок блока цилиндров

Дата добавления: 2016-09-26; просмотров: 2654; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Похожие статьи:

poznayka.org

Блок и головка цилиндров

Категория:

   Техническое обслуживание автомобилей

Блок и головка цилиндров

В состав кривошипно-шатунного механизма двигателя входят две группы деталей: неподвижные и подвижные.

К неподвижным деталям относятся блок цилиндров, служащий остовом двигателя, цилиндры, головка блока или головка цилиндров и поддон картера. Подвижными деталями являются поршни с кольцами и поршневыми пальцами, шатун, коленчатый вал, маховик.

Блок цилиндров. У V-образных двигателей блок цилиндров (рис. 2.1) представляет собой массивный литой корпус, снаружи и внутри которого монтируются все механизмы и системы.

Нижняя часть блока является картером, в литых поперечинах которого расположены опорные гнезда для подшипников коленчатого вала. Такую отливку часто называют блок-картером.

В средней части блока цилиндров имеются отверстия для установки подшипников скольжения под опорные шейки распределительного вала. Плоскость разъема блока может проходить по оси коленчатого вала или быть смещенной относительно ее вниз. К нижней части блок-картера крепится стальной штампованный поддон, служащий резервуаром для масла. По каналам в блоке масло из поддона подается к трущимся деталям двигателя.

На V-образных двигателях (ЗИЛ-130, 3M3-53-11, ЯМЭ-238 и др.) для повышения жесткости блока цилиндров его плоскость разъемна, расположена ниже оси коленчатого вала. В отливке блока цилиндров имеется рубашка для жидкостного охлаждения двигателя, представляющая собой полость (рис. 2.1,6) между стенками блока и наружной поверхностью вставных гильз 5. Охлаждающая жидкость подается в рубашку охлаждения через два канала 4 (рис. 2.1, а), расположенные по обеим сторонам блока цилиндров. К передней части блока цилиндров крепится крышка распределительных шестерен, а к задней — картер сцепления.

Блоки цилиндров отливаются из серого чугуна (у двигателей автомобилей семейств ЗИЛ, КамАЗ, МАЗ и ВАЗ) или из алюминиевого сплава (у двигателей автомобилей ГАЗ-24-10 «Волга», «Москвич-2140»).

Рис. 2.1. Блок цилиндров V-образного двигателя: а—общий вид; б—вид сзади

Рабочая поверхность цилиндров (рис. 2.2) является направляющей при движении поршня и вместе с ним и головкой блока цилиндров образует замкнутое пространство, в котором происходит рабочий цикл двигателя. Для плотного прилегания поршня и поршневых колец к цилиндру и уменьшения сил трения между ними внутреннюю полость цилиндров тщательно обрабатывают с высокой степенью точности и чистоты, поэтому она называется зеркалом цилиндра.

У дизелей КамАЗ на зеркале цилиндров наносят мелкую (ромбовидную) сетку для лучшего удержания смазочного материала.

Цилиндры могут быть отлиты как одно целое со стенками рубашки охлаждения (рис. 2.2, а) или изготовлены отдельно от блока в виде вставных гильз.

Последние подразделяются на «сухие» гильзы, запрессованные в расточенный блок (рис. 2.2,6), и сменные «мокрые» гильзы (рис. 2.2, в—д), омываемые с наружной стороны охлаждающей жидкостью.

При сгорании рабочей смеси верхняя часть цилиндров сильно нагревается и подвергается окислительному воздействию продуктов сгорания, поэтому в верхнюю часть блока цилиндров или гильз, как правило, запрессовывают короткие вставки — сухие гильзы длиной 40—50 мм (у двигателей автомобилей ЗИЛ-130, ГАЗ-24-10 «Волга», ЗИЛ-157КД, ГАЗ-53-12 и др.). Вставки (см. рис. 2.7) изготовляют из легированного чугуна, обладающего высокой износо- и коррозионной стойкостью.

При установке мокрой гильзы ее бурт 6 (см. рис. 2.2, в) выступает над плоскостью разъема на 0,02— 0,15 мм. Это позволяет уплотнять ее, зажимая бурт через прокладку (см. рис. 2.2, б) между блоком и головкой цилиндров. В нижней части гильза уплотняется двумя резиновыми кольцами 8 (см. рис. 2.2, г) (у двигателей ЗИЛ-130, ЯМЭ-236, КамАЗ-740 и др.) или медными прокладками 9 (см. рис. 2.2, д), установленными по торцу нижнего пояса гильзы (у двигателей автомобилей семейств ГАЗ, «Москвич» и др.). Преимущественное применение в двигателях мокрых гильз связано с тем, что они обеспечивают лучший отвод тепла. Это повышает работоспособность и срок службы деталей цилиндропоршневой группы, при этом снижаются затраты, связанные с ремонтом двигателей в процессе эксплуатации.

Головка цилиндров. В головке цилиндров размещены камеры сгорания (рис. 2.3), в которых установлены впускные и выпускные клапаны, свечи зажигания или форсунки. На головке цилиндров крепятся детали и узлы привода клапанного механизма.

Значительное влияние на процесс смесеобразования как в карбюраторных двигателях, так и в дизелях имеют формы камер сгорания. В карбюраторных двигателях (рис. 2.3, а) наибольшее распространение получили цилиндрические, полусферические II и клиновые III камеры с верхним расположением клапанов. У дизелей (рис. 2.3, б) широкое применение находят неразделенные IV и разделенные V и VI камеры сгорания, состоящие из вспомогательного небольшого пространства— предкамеры или вихревой камеры, и основной камеры сгорания 6, соединенных между собой каналами.

Рис. 2.2. Схемы цилиндров двигателей: а — с короткой сухой вставкой; б — с сухой гильзой; в — д — с мокрыми гильзами

Двигатели с рядным расположением цилиндров имеют одну общую головку цилиндров, двигатели с V-образным расположением цилиндров— две (двигатели ЗИЛ-130, ГАЗ-53-11) или четыре на каждые три цилиндра (двигатель ЯМЗ-240). У двигателей автомобилей КамАЗ каждый цилиндр снабжен отдельной головкой цилиндра.

На рис. 2.4 показана головка цилиндра двигателя ЗИЛ-130, с внутренней стороны которой находятся камеры сгорания с вставными седлами выпускных клапанов, седлами впускных клапанов и с отверстиями для свечей зажигания (рис. 2.4,6). На одной боковой поверхности сделаны каналы (рис. 2.4, а) для подвода горючей смеси и каналы для циркуляции охлаждающей жидкости, а на другой — каналы (см. рис. 2.4, б) для отвода отработавших газов. В каждой камере сгорания имеются отверстия для запрессовки направляющих втулок клапанов. Плоскость разъема между головками и блоком цилиндров уплотняют сталеасбестовыми прокладками.

Рис. 2.3. Формы камер сгорания поршневых двигателей: а — карбюраторных; б — дизелей: I — цилиндрическая; II—полусферическая; III— клиновая; IV—неразделенная; V—VI—разделенные

Рис. 2.4. Головка цилиндров V-образного двигателя: а — вид со стороны камер сгорания; б — вид со стороны коромысел

Головка цилиндров крепится к блоку при помощи шпилек с гайками или болтами. Гайки или болты головки цилиндров затягивают равномерно в определенной последовательности с установленным для каждого двигателя моментом затяжки.

Реклама:
Читать далее: Поршневая группа и шатуны

Категория: - Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Головки цилиндров (ГБЦ)

Головки (крышки) цилиндров вместе с цилиндрами образуют надпоршневую полость, в которой осуществляются все тепловые процессы рабочего цикла двигателя. Головка (ГБЦ) не только закрывает цилиндр, по и служит полостью для полного или частичного разме­щения объема сжатия c, т. е. камеры сгорания, а также свечи зажигания (при внешнем смесеобразовании) или форсунки (в дви­гателях с внутренним смесеобразованием). В головке верхнеклапан­ного двигателя размещается клапанный механизм, каналы впуска рабочего тела в цилиндр и выпуска горячих отработавших газов. К головкам крепят также впускные и выпускные трубопроводы с их системами и вспомогательное оборудование двигателя.'

Стенки головки, образующие камеру сгорания, в большей мере, чем стенки цилиндра, подвержены воздействию открытого пламени и давлению газа. Поэтому делают их в 1,5—2,0 раза толще стенок гильз цилиндров и интенсивно охлаждают.

При жидкостном охлаждении головки (ГБЦ), как и цилиндры, одевают рубашкой охлаждения, а в двигателях воздушного охлаждения — оребряют. Полости рубашек охла­ждения головки и цилиндра с помощью протоков объединяются в общую систему, циркуляция жидкости в которой организуется так, чтобы «холодный» поток ее на входе в систему охлаждения двигателя имел температуру около 80°С и прежде всего омывал наи­более горячие стенки головки (выпускные патрубки). В двигателях воздушного охлаждения оребрение головки делают особенно раз­витым, причем ребра располагают по движению потока охлаждающе­го воздуха так, чтобы обеспечивался более эффективный теплоотвод.

В связи с изложенным головка цилиндров приобретает весьма сложную конструкцию, особенно в двигателях с верхним располо­жением клапанов. Головки автомобильных двигателей делают не только съемными, но и отливают общими для всех цилиндров, обра­зующих ряд (от двух до восьми включительно), или для группы цилиндров (практикуется в основном при воздушном охлаждении). Только в очень малых двухтактных одноцилиндровых двигателях находит еще применение совместная отливка головки с цилиндром. Объединение этих важных конструктивных элементов остова двига­теля чрезвычайно осложняет обработку зеркала цилиндра и выпол­нение монтажно-демонтажных работ при ремонте многоцилиндро­вых двигателей, поэтому метод совместной отливки в авто- и тракто­ростроении в настоящее время не применяется.

Головки (ГБЦ) двигателей автомобильного и тракторного типов изгото­вляют из серого или легированного чугуна, но чаще всего из алю­миниевых сплавов (для краткости их называют обычно алюминие­выми). В карбюраторных двигателях с воздушным и жидкостным охлаждением предпочтительнее применять алюминиевые головки. Алюминиевые сплавы обладают хорошей теплопроводностью, вслед­ствие чего тепловая напряженность стенок головки бывает сравни­тельно ниже чугунных. Поэтому алюминиевые головки способ­ствуют уменьшению степени подогрева свежего заряда и позволяют работать с более высокими степенями сжатия на том же топливе без возникновения детонационного сгорания. В результате этого при­менение алюминиевых головок позволяет улучшать мощностные и экономические показатели двигателей.

Чтобы одновременно использовать высокую теплопроводность алюминия и жаростойкость чугуна в дизелях с воздушным охлажде­нием, основание головки и патрубки, особенно выпускных каналов, изготовляют иногда из чугуна и заливают их алюминиевым сплавом. По сравнению с чугунными головками это улучшает теплоотвод и уменьшает возможную деформацию головки при ее нагреве и охла­ждении. Однако для головок форсированных дизелей (работающих с большой тепловой напряженностью) рекомендуется применение алюминиевых сплавов.

При изготовлении головок из алюминиевых сплавов обязатель­но применяются вставные седла под клапаны. Они изготавливаются из высокопрочного жаростойкого чугуна, имею­щего высокий коэффициент линейного расширения , из легированной или среднеуглеро-дистой стали и алюминиевой бронзы.

Для плотной и надежной посадки вставных седел в головку ее нагревают примерно до 170—200°С, а седла охлаждают иногда до температуры минус 80°С (в сухом льду). После такой сборки седла обвальцовывают еще путем уплотнения вокруг них материала головки. Необходимость этого вызывается тем, что наиболее горячим местом головки является перемычка между гнездами клапанов, нагревающаяся до 230— 260°С, а так как механическая прочность алюминиевых сплавов при нагреве заметно снижается, то плохая посадка вставного седла приводит к потере герметичности и выходу из строя всей головки. В нагретую головку запрессовывают и направляющие втулки для клапанов, которые изготовляют из чугуна, металло­керамики или бронзы. Такие втулки используют и в чугунных головках.

Вставки в алюминиевую головку двигателей воздушного охла­ждения делают также для крепления свечи зажигания или форсун­ки, если последняя имеет резьбовое крепление, т. е. ввертывают непосредственно в тело головки. Такие вставки обычно выполняют в виде простых резьбовых переходных втулок (футорок) и вверты­вают в предварительно нагретую головку.

Вставные седла под клапаны применяют и в чугунных головках, но их обычно ставят под выпускные клапаны, поскольку они рабо­тают в более тяжелых условиях (средняя температура нагрева достигает у них 800°С). Вставки в этих случаях изготовляют из жаропрочных материалов.

Плоскости стыка головки и блока цилиндров уплотняют с по­мощью стале-асбестовых или цельнометаллических прокладок, кото­рые ставят сразу под всю головку. При затяжке шпилек крепления головки, например, право­го блока цилиндров прокладка зажимается между верхней опорной плоскостью правого блока и привалочной пло­скостью его головки.

С тале-асбестовые прокладки в настоящее время применяют в подавляющем большинстве двигателей автомобильного типа. Их основу составляет огнестойкий волокнистый мине­рал — асбест, приготовленный в виде тонкого листа (листовой асбест). Для придания прокладкам необходимой прочности их армируют тонким перфорированным стальным листом или сеткой из стальной проволоки. В последнем случае получают асбостальное полотно, из которого и вырубают прокладки головки блока. Про­кладки делают с такими же внутренними и наружными контурами, какие имеются у привалочной плоскости блока цилиндров со слож­ным рисунком отверстий под камеры сгорания, шпильки крещения соединительные каналы рубашки охлаждения и т. д. Толщина прокладок в рабочем (сжатом) положении составляет примерно 1,5 мм.

По контуру камер сгорания и в местах с тонкими перемычками между цилиндрами стале-асбестовые и другие армированные про­кладки окантовывают тонким сравнительно мягким стальным листом. Металлическая окантовка улучшает механические свой­ства прокладок и главное позволяет повышать местную плотность стыка вокруг камеры сгорания, что имеет важное значение для надежного уплотнения цилиндров. Чтобы предохранить прокладку от прогорания, ее окантованную кромку отводят от контура'вну­тренних стенок камеры сгорания примерно на 1—2 мм. В конструк­циях с мокрыми гильзами с этой целью опорный фланец гильзы снабжают иногда специальным буртиком, который защи­щаетуплотнительную прокладку от воздействия открытого пламени и возможного ее прогорания.

Для уменьшения прилипаемости прокладок к привалочным плос­костям головки или цилиндров и последующего разрыва их при разборке двигателя поверхности прокладок обильно покрывают графитом. Ранее все асбестовые прокладки двигателей вообще пол­ностью облицовывались тонкой листовой латунью (фольгой). В результате получались так называемые медно-асбестовые проклад­ки, выдерживавшие многократное употребление, но вследствие относительной их сложности и дороговизны в подавляющем боль­шинстве случаев они заменяются теперь сравнительно простыми, дешевыми, хотя и менее надежными, армированными прокладками.

Цельнометаллические прокладки под головку блока изготовляют из листовых металлов — алюминия, меди или мягкой стали. Алюми­ниевые прокладки используют, например, на дизеле В-2. Они вырубаются из целого листа под всю головку ряда (блока цилиндров) так, чтобы перекрывался опорный фланец гильзы, который, в случаях использования мокрых гильз, обычно на 0,1— 0,2 мм возвышается над привалочной плоскостью блока цилиндров. Опорный фланец мокрой гильзы В-2 в зоне соприкосновения с про­кладкой имеет ряд кольцевых уплотнительных канавок, а по вну­тренней кромке — буртик, предохраняющий алюминиевую про­кладку от непосредственного воздействия открытого пламени.

Стальные прокладки под головку блока представляют собой набор нескольких, определенным образом спакетированных, тонких, относительно мягких листов. Такие прокладки применяют, в част­ности, на двухтактных дизелях Ярославского моторного завода.

Медные уплотнительные прокладки, изготовленные в виде тон­ких колец, ставят под чугунные головки цилиндров двигателей воздушного охлаждения. Алюминиевые головки в этих двигателях обычно устанавливают без прокладок.

Надежность уплотнения головки блока в любом случае зависит от правильной и равномерной ее затяжки при установке на цилинд­ры. Головку блока следует затягивать только на холодном двига­теле в строго определенной последовательности и обязательно динамометрическим ключом, позволяющим контролировать вели­чину приложенного усилия. Затяжку головки обычно начинают со средней ее зоны с постепенным переходом к периферийным зонам. Момент затяжки головок в карбюраторных двигателях жидкостного охлаждения составляет в среднем 7—12 кГ·м (≈70—120 н·м), а в дизелях достигает 20 кГ·м (≈200 н·м). При выборе последовательности и нужного момента затяжки в каждом отдельном случае следует руководствоваться инструкцией завода-изготовителя. Неправильная затяжка головки снижает или вовсе сводит на нет эффективность любых уплотнительных прокладок. Надо следить также за тем, чтобы под гайки шпилек (головки бол­тов) крепления алюминиевых головок обязательно подкладывались обычные стальные толстые шайбы, иначе гайки будут врезаться в мягкое тело головки и разрушать поверхность ее стенок. Чугун­ные головки крепят без применения шайб.

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.

azbukadvs.ru

Головка Блока Цилиндра. Часть3 — DRIVE2

Продолжение, начало здесь

Рисунок 20 – Поля полного давления при различной высоте расположения горловины седла ht

Влияние угла раскрытия конфузора αcна массовый расход очень мало, см. рисунок 21, что подтверждает известный факт об отсутствии гидравлических потерь на сужающихся участках канала.

Рисунок 21 – Влияние угла раскрытия конфузора αc на расход воздуха через впускной канал

Полученные в результате численного моделирования поля скорости, числа Маха, статического и полного давлений приведены на рисунках 22, 23, 24, 25 для двух крайних значений угла раскрытия конфузора 𝛼c.

Рисунок 22 – Поля скорости при различном угле раскрытия диффузора ac

Рисунок 23 – Поля числа Маха при различном угле раскрытия диффузора ac

Рисунок 24 – Поля статического давления при различном угле раскрытия диффузора ac

Рисунок 25 – Поля полного давления при различном угле раскрытия диффузора ac

Таким образом, на основании проведенных исследований была выбрана геометрия осесимметричной части канала, показанная на рисунке 26.

Рисунок 26 – Эскиз рекомендуемой геометрии осесимметричной части канала

Профилирование впускных каналов в крышке цилиндров

Вторым этапом профилирования впускного тракта стал выбор геометрии каналов в крышке цилиндров. Для данного двигателя предполагается использование четырехклапанной головки цилиндров и уменьшенного угла фаски впускных клапанов 30° для улучшения наполнения цилиндров. Примерный эскиз впускных каналов в крышке показан на рисунке 27. Также на нем отмечены геометрические параметры области, влияние которых на пропускную способность каналов было рассмотрено в настоящей работе. К этим параметрам относятся:

— Форма входного сечения (овальная или круглая).

— Расположение верхней кромки входного сечения, hmax.

— Площадь входного сечения AINL.

— Диаметр тарелки клапана Dv.

— Расстояние между осью цилиндра и плоскостью расположения впускных клапанов XV .

Рисунок 27 – Эскиз впускных каналов в крышке цилиндров

Сравнение результатов численного моделирования для каналов с овальным входным сечением (рисунок 28) и каналов с круглым входным сечением (рисунок 29) показало равенство расходных характеристик для этих двух случаев. Таким образом, для дальнейшего рассмотрения были выбраны каналы с круглым входом, как более простые и технологичные.

Полученные в результате численного моделирования поля скорости, числа Маха, статического и полного давлений для каналов с овальным и круглым входными сечениями приведены на рисунке 30.

Рисунок 28 – Канал с овальным входным сечением

Рисунок 29 – Канал с круглым входным сечением

Рисунок 30 – Параметры газового потока в каналах с овальным (слева) и круглым (справа) входными сечениями

В качестве следующего этапа профилирования каналов в крышке цилиндров было рассмотрено влияние высоты подъема входного сечения на расходные характеристики канала. Трехмерные модели расчетной области для двух крайних рассмотренных точек приведены на рисунке 31.

Рисунок 31 – Модели впускного канала при различных значениях высоты верхней кромки входного сечения

Как правило, увеличение высоты hmaxпозволяет повысить плавность изгиба канала и тем самым снизить возникающую из-за него неравномерность поля скоростей. С другой стороны, это увеличение приводит к росту высоты головки цилиндров, что отрицательно сказывается на массогабаритных показателях двигателя. Проведенное численное моделирование показало, что положительный эффект от увеличения hmaxприсутствует, но его величина сравнительна невелика (см. рисунки 32, 33 e, 33 f), поэтому для дальнейших исследований было принято значение hmax = 58 мм. Окончательное значение должно быть выбрано с учетом частных требований к компоновке и конструкции двигателя.

Рисунок 32 – Влияние высоты верхней кромки входного сечения на расход воздуха через впускной канал

Рисунок 33 – Поля параметров газа при различной высоте впускного канала

Далее было рассмотрено влияние на массовый расход площади входного сечения. При этом координата верхней кромки канала сохранялась неизменной, а входное сечение имело форму окружности. Модели каналов для двух крайних значений площади приведены на рисунке 34. Расчет показал, что увеличение площади входного сечения приводит к росту пропускной способности канала (см. рисунок 35), однако после достижения площади значения порядка 14 см2 дальнейший рост расхода можно считать незначительным. Таким образом, для профилируемого канала было выбрано значение площади AINL=14 см2. Полученные в результате численного моделирования поля скорости, числа Маха, статического и полного давлений для различных площадей входного сечения приведены на рисунке 36.

Рисунок 34 – Модели впускного канала при различных площадях входного сечения

Рисунок 35 – Влияние площади входного сечения на расход воздуха через впускной канал

Рисунок 36 – Поля параметров газа для различных площадей входного сечения

Диаметр тарелки клапана имеет сильный эффект на расход воздуха через каналы за счет увеличения минимального проходного сечения щели. Однако при этом увеличение клапанов приводит к росту неравномерности поля скоростей из-за увеличения влияния зеркала цилиндра и взаимного влияния клапанов. Как можно видеть из рисунка 37, в рассматриваемом диапазоне диаметров клапанов влияние роста минимального проходного сечения превышает отрицательный эффект загромождения области течения потоком от соседнего клапана и зеркалом цилиндра. Трехмерные модели расчетной области, рассеченные по плоскости клапанов, представлены на рисунке 38. Параметры потока показаны на рисунке 39. В силу того, что дальнейшее увеличение диаметров впускных клапанов приводит к чрезмерному снижению проходного сечения выпускных каналов, в качестве оптимального было выбрано значение Dv=28 мм.

Рисунок 37 – Влияние диаметра тарелки клапана на расход воздуха через впускной канал

Рисунок 38 – Модели впускного канала при различных диаметрах тарелки клапана

Концовку в студию!

www.drive2.ru


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости