С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Как работает водородный двигатель


Водородный двигатель; устройство, принцип работы, перспективы

После исчерпывания природных запасов нефти, людям придется полностью положиться на альтернативные виды получения энергии. Водородный двигатель, как замена ДВС, работающих на черном золоте, является одной из перспектив будущих десятилетий.

Силовые установки такого типа имеют больший КПД и меньшую степень токсичности выхлопных газов. Впрочем, главное преимущество моторов, работающих на водороде, – неограниченный запас сырья для производства топлива. Вода, именно она может стать основой топлива будущего.

Интерес к использованию водорода появился еще во время топливного кризиса 70-х годов, но первый водородный двигатель был изобретен только в начале XIX столетия. Действительное применение технология получила во время блокады Ленинграда, когда водородом заправляли лебедки аэростатов, транспорт.

Несмотря на очевидные преимущества, знания способов получения водорода и его использования для работы двигателя внутреннего сгорания, существует несколько значительных «но», замедляющих внедрение этой прогрессивной технологии.

  • после сгорания остается только водяной пар;
  • реакция происходит намного быстрей, чем в случаи с бензином либо дизелем;
  • детонационная устойчивость позволяет повысить степень сжатия;
  • благодаря своей летучести, водород способен проникать в самые малые полости, зазоры между деталями (лишь особые сплавы повышенной прочности способны переносить разрушительное воздействия водорода на структуру металла);
  • теплоотдача сгорания водорода в 2,5 раза больше, чем у бензиновой смеси;
  • широкий диапазон реакции. Минимальная пропорция водорода, достаточная для реакции с кислородом, составляет всего 4%. Такая особенность позволяет настраивать режимы работы двигателя, дозируя консистенцию смеси;
  • хранение водорода осуществляется в сжатом или жидком агрегатном состоянии. При пробое бака, газ под давлением испаряется.

Ввиду перечисленных выше особенностей, использования водорода, как чистого топлива для ДВС, невозможно без внедрения изменений конструкции силового агрегата, а также навесного оборудования.

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Благодаря большому интересу к использованию водорода в качестве топлива для ДВС, гидродвигатели внутреннего сгорания имеют различные модификации и типы исполнения.

Схема устройства гибридного водородного двигателя

Мотор, разработанный В.С. Кащеевым, имеет иное устройство. Помимо впускного клапана (6) для подачи воздуха, выпускного для вывода выхлопных газов (7), ГБЦ имеет отдельный клапан для подачи водорода (9) и свечу зажигания (10), которые находятся в предкамере (8). Последняя расположена в ГБЦ выше уровня поршня в положении НМТ.

После преодоления поршнем НМТ в камеру сгорания подается и воспламеняется водород (предварительно поршень затягивает воздух через впускные клапаны). В это же самое время открываются выпускные клапаны. Из-за разницы атмосферного давления, отработанные газы устремляются в выпускной коллектор, создавая за собой вакуум, который перемещает поршень к ВМТ и за счет импульса обратно в крайнее нижнее положение. Как видим, принцип немного отличается, но суть остается неизменной.

Технология гибридных силовых установок – это промежуточная ступень между началом использования водорода в качестве топлива и полным отказом от использования нефтепродуктов. Автомобили с моторами такого типа могут передвигаться как на бензине, так и на водороде.

Еще более широкого распространения получило применение водорода в качестве компонента топливно-воздушной смеси. Для работы ДВС используется обычное топливо и небольшая часть гремучего газа. Это позволяет повысить степень сжатия, и уменьшить токсичность выхлопных газов.

Одним из возможных путей развития двигателей на водороде является применение силовых установок с топливными элементами. Во время химической реакции водорода и кислорода выделяется энергия, которая используется для питания электродвигателей автомобиля.

Трудности эксплуатации водородных ДВС

Главное препятствие на пути внедрения технологии – это стоимость получения водорода (Н2), а также комплектующих для его хранения и транспортировки. К примеру, для сохранения сжиженного состояния нужно поддерживать стабильную температуру -253º С. Наиболее доступный способ получения Н2 – это электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным этот процесс сможет сделать ядерная энергетика, которой также пытаются найти рациональную альтернативу. Транспортировка и хранение газа требуют использования дорогостоящих материалов и высококачественных механизмов. К другим недостаткам водородного топлива можно отнести:

  • взрывоопасность. В замкнутом пространстве достаточная для реакции концентрация гремучего газа может спровоцировать взрыв. Усугубить ситуацию способна высокая температура воздуха. Из-за высокой степени диффузности водорода существует риск попадания Н2 в выхлопной коллектор, где реакция с горячими выхлопными газами приведет к возгоранию смеси. Роторный двигатель, ввиду особенностей компоновки, является более предпочтительным для водородного автомобиля;
  • для хранения водорода требуется емкость большого объема, а также специальные системы, препятствующие улетучиванию Н2 и обеспечивающие защиту от механических деформаций. Если для автобусов, грузовиков либо водного транспорта такая особенность не играет большой роли, то легковые автомобили теряют ценные кубометры багажного отделения;
  • в режимах высокотемпературных нагрузок водород способен провоцировать разрушительное воздействие на детали цилиндропоршневой группы и моторное масло. Применение соответствующих сплавов и смазочных материалов ведет к удорожанию производства и эксплуатации двигателей, работающих на водороде.

Перспективы развития

Автомобилестроение – далеко не единственная область, где могут применяться водородные двигатели. Водный, железнодорожный транспорт, авиация, а также различная вспомогательная спецтехника могут использовать силовые установки подобного типа.

Интерес к внедрению технологии водородных двигателей проявляют как дочерние предприятия, так и крупные автоконцерны (BMW, Volskwagen, Toyota, GM, Daimler AG и прочие). Уже сейчас на дорогах можно встретить не только опытные образцы, но и полноценные представители модельного ряда, приводимые в движение с помощью водорода. BMW 750i Hydrogen, Honda FSX, Toyota Mirai и многие другие модели отлично зарекомендовали себя во время дорожных испытаний. К сожалению, высокая стоимость водорода, отсутствие инфраструктуры заправочных станций, а также достаточного количества квалифицированных сотрудников, оборудования для ремонта и обслуживания не позволяют запустить такие автомобили в массовое производство. Оптимизация всего цикла использования гремучего газа являются первоначальной задачей области развития водородной энергетики.

Водородный двигатель: принцип работы и устройство

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют  роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды  на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода  на полном баке водорода составляет около 300  км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы  и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных  легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород  весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для  авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Принцип работы водородного двигателя для автомобиля

Двигатель внутреннего сгорания уже давно является далеко не единственным силовым агрегатом, который устанавливается на автомобили: альтернативой ему в последнее время всё чаще становятся моторы, использующие в качестве движущей силы электричество, и водородные установки. Именно о последнем механизме и пойдет речь ниже.

Краткая история создания

Двигатель на водороде был создан в начале XIX века усилиями французского изобретателя. Спустя 35 лет в Англии был оформлен официальный патент на подобный агрегат, а в 1852 году немецкие инженеры доработали устройство, сделав возможной его работу на воздушно-водородной смеси.

Особое распространение моторы на водороде приобрели в годы ВОВ, когда бензин оказался в большом дефиците. Затем интерес к данному виду топлива поутих до топливного кризиса, случившегося в 70-е годы.

В последнее же время за развитие экологически безопасного топлива ратуют защитники природы и просто люди, неравнодушные к дальнейшей судьбе планеты и будущих поколений.

Принцип работы водородного двигателя

Функционирование двигателя на водородном топливе отличается от действия двигателя внутреннего сгорания, прежде всего, особенностями подачи и воспламенения смеси топлива, но принцип работы остаётся таким же.

Бензин горит медленно, а в случае с водородом время впрыска сдвигается к моменту возвращения поршня к крайнему положению, давление же может быть низким.

Водородный двигатель в идеальных условиях и вовсе способен работать без поступления воздуха: в камере сгорания останется после сжатия пар, который снова станет водой (это обеспечит радиатор). Однако на практике добиться этого сложно, т. к. на авто придётся устанавливать электролизер (специальное устройство, отделяющее водород от воды с целью осуществления реакции с кислородом).

Водородные топливные элементы

Эти устройства напоминают традиционные аккумуляторы с более высоким КПД, достигающим 45%.

В корпус помещается мембрана, проводящая исключительно протоны и разделяющая две камеры (анодную и катодную): в первую поступает водород, во вторую – кислород. Электроды покрываются катализатором (в его качестве часто применяют платину), при воздействии которого начинается процесс потери электронов водородом.

Протоны, проходящие в тот же период времени в катодную камеру, соединяются с приходящими извне электронами, что происходит опять же вследствие наличия катализатора.

Устройство водородного двигателя внутреннего сгорания

Такой движок практически ничем не отличается от пропанового агрегата, поэтому часто владельцы таких машин просто перенастраивают двигатели (но это и приводит к снижению КПД).

Как работает машина с водородным двигателем? В ней установлен генератор: внутри него протекает реакция окисления водорода, в конце которой получаются азот, пар и электрический ток (углекислый газ в продуктах распада отсутствует).

Автомобиль с таким силовым агрегатом можно сравнить с электрокаром, но с более компактным аккумулятором. На рабочий режим элемент выходит спустя пару минут после запуска, а вот на прогрев до рабочей температуры может уйти и час (на точное время влияет температура окружающей среды). Появляется вода, а электроны из анодной камеры попадают в электрическую цепь, подключенную к движку. Иными словами, получается ток, питающий автомобильный водородный двигатель.

Минусы водородного мотора

Водородные двигатели для автомобилей при всех плюсах не лишены недостатков:

  1. Высокая стоимость, на которую влияют, во-первых, электрический генератор, во-вторых, необходимые для эксплуатации авто баки из углепластика.
  2. Низкая энергетическая эффективность. У электромобиля КПД равняется 70%, у водородного топлива – 30%, если же водород получать из нефти, этот показатель увеличится примерно в 2 раза, но тогда появится углекислый газ.
  3. Малое количество заправок. Если в Европе они хотя бы есть, то в России такие заправочные станции в принципе отсутствуют.
  4. Необходимость периодической проверки баллонов, заправленных водородом, в целях безопасности.
  5. Увеличение веса машины и, как следствие, ухудшение маневренности.

Безусловно, защита окружающей среды имеет огромное значение, но пока что автолюбители не готовы жертвовать собственным комфортом и деньгами ради экологии.

Видео о том как работает водородный двигатель

Как работает водородный двигатель в автомобиле?

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше. Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

Чуть позже, во времена блокады Ленинграда, когда бензин был дефицитным продуктом, а водород имелся в достаточно большом количестве, техник Борис Шелищ предложил использовать для работы заградительных аэростатов воздушно-водородную смесь. После этого на водородное питание перевели все ДВС лебедок аэростатов, а общее число работающих на водороде машин достигало 600 единиц.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира. Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется моторное масло, а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок: агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).

В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых, высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых, даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых, ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых, массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости