С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Как устроена турбина в двигателе автомобиля


Как выглядит турбина в двигателе автомобиля

Главная » Разное » Как выглядит турбина в двигателе автомобиля

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

                       А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту,во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

                             Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». источник : www.drive.ru

rosautopark.ru

Для чего нужна турбина в автомобиле и как она работает

Слово «турбонаддув» хоть раз в жизни слышал, вероятно, каждый автомобилист. Еще в старые советские времена среди гаражных мастеров ходило множество невероятных слухов о колоссальном приросте мощности, даваемом турбонаддувом, однако реально с моторами такого типа в легковых авто никто тогда не сталкивался.

Сегодня же наддувные двигатели прочно вошли в нашу действительность, однако в реальности далеко не каждый может сказать о том, как работает турбина в автомобиле, и какая существует реальная польза либо вред от использования турбины.

Что ж, попробуем разобраться в этом вопросе и узнать, каков принцип работы турбонаддува, а также о том, какие он имеет преимущества и недостатки.

Автомобильная турбина — что это такое

Говоря простым языком, автомобильная турбина представляет собой механическое устройство, подающее в цилиндры воздух под давлением. Задачей турбонаддува является увеличение мощности силового агрегата при сохранении рабочего объема мотора на прежнем уровне.

То есть, по факту, используя турбонаддув, можно добиться пятидесятипроцентного (и даже более) прироста мощности в сравнении с безнаддувным мотором аналогичного объема. Обеспечивается повышение мощности тем, что турбина подает в цилиндры воздух под давлением, что способствует лучшему горению топливной смеси и, как результат, мощностной отдаче.

Чисто конструктивно турбина представляет собой механическую крыльчатку, приводимую в действие выхлопными газами двигателя. По сути, используя энергию выхлопа, турбонаддув способствует захвату и подаче «жизненно важного» для мотора кислорода из окружающего воздуха.

Сегодня турбонаддув выступает самой эффективной в техническом плане системой для повышения мощности мотора, а также достижения малого расхода топлива и токсичности отработанных газов.

Видео — как работает автомобильная турбина:

Турбина одинаково широко применяется как на бензиновых силовых агрегатах, так и на дизелях. При этом в последнем случае турбонаддув оказывается наиболее эффективным ввиду высокой степени сжатия и малой (относительно бензиновых моторов) частоты вращения коленвала.

Кроме того, эффективность применения турбонаддува на бензиновых двигателях ограничена возможностью проявления детонации, которая может возникать при резком увеличении оборотов мотора, а также температура выхлопных газов, которая составляет порядка одной тысячи градусов по Цельсию против шестисот у дизеля. Само собой, что подобный температурный режим способен привести к разрушению элементов турбины.

Конструктивные особенности

Несмотря на то, что турбонаддувные системы у различных производителей имеют свои отличия, существует и ряд общих для всех конструкций узлов и агрегатов.

В частности, любая турбина имеет воздухозаборник, установленный непосредственно за ним воздушный фильтр, заслонку дросселя, сам турбокомпрессор, интеркулер, а также впускной коллектор. Элементы системы соединяются между собой шлангами и патрубками, выполненными из прочных износостойких материалов.

Как наверняка заметили читатели, знакомые с конструкцией автомобиля, существенным отличием турбонаддува от традиционной системы впуска является наличие интеркулера, турбокомпрессора, а также конструктивных элементов, предназначенных для управления наддувом.

Турбокомпрессор или, как его еще называют, турбонагнетатель, представляет собой основной элемент турбонаддува. Именно он отвечает за увеличение давления воздуха во впускном тракте двигателя.

Конструктивно турбокомпрессор состоит из пары колес – турбинного и компрессорного, которые размещаются на роторном валу. При этом каждое из этих колес имеет собственные подшипники и заключено в отдельный прочный корпус.

Как работает турбонаддув в машине

Энергия отработанных выхлопных газов в двигателе направляется на турбинное колесо нагнетателя, которое под воздействием газов вращается в своем корпусе, имеющем особую форму для улучшения кинематики прохождения выхлопных газов.

Температура здесь весьма высока, а потому корпус и сам ротор турбины вместе с ее крыльчаткой выполняются из жаропрочных сплавов, способных выдерживать длительное высокотемпературное воздействие. Также в последнее время для этих целей используются керамические композиты.

Компрессорное колесо, вращаемое за счет энергии турбины, осуществляет всасывание воздуха, его сжатие и последующее нагнетание в цилиндры силового агрегата. При этом вращение компрессорного колеса также производится в отдельной камере, куда попадает воздух после прохождения через воздухозаборник и фильтр.

Видео — для чего нужен турбокомпрессор и как он работает:

Как турбинное, так и компрессорные колеса, как уже говорилось выше, жестко закрепляются на роторном валу. При этом вращение вала производится с помощью подшипников скольжения, которые смазываются моторным маслом из основной системы смазки двигателя.

Подача масла к подшипникам производится по каналам, которые располагаются непосредственно в корпусе каждого подшипника. Для того, чтобы герметизировать вал от попадания масла внутрь системы, используются специальные уплотнительные кольца из жаростойкой резины.

Безусловно, основной конструктивной сложностью для инженеров при проектировании турбонагнетателей является организация их эффективного охлаждения. Для этого в некоторых бензиновых моторах, где тепловые нагрузки наиболее высоки, нередко применяется жидкостной охлаждение нагнетателя. При этом корпус, в котором расположены подшипники, включается в двухконтурную систему охлаждения всего силового агрегата.

Еще одним важным элементом системы турбонаддува является интеркулер. Его предназначением выступает охлаждение поступающего воздуха. Наверняка многие из читателей этого материала зададутся вопросом о том, зачем охлаждать «забортный» воздух, если его температура и так невелика?

Ответ кроется в физике газов. Охлажденный воздух увеличивает свою плотность и, как результат, возрастает его давление. При этом конструктивно интеркулер представляет собой воздушный либо жидкостный радиатор. Проходя через него, воздух снижает температуру и увеличивает свою плотность.

Важной деталью системы турбонаддува автомобиля выступает регулятор давления наддува, представляющий собой перепускной клапан. Он применяется с целью ограничить энергию отработавших газов двигателя и направляет их часть в сторону от колеса турбины, что позволяет регулировать давление наддува.

Привод клапана может быть пневматическим или электрическим, а его срабатывание осуществляется за счет сигналов, получаемых от датчика давления наддува, которые обрабатываются блоком управления двигателем автомобиля. Именно электронный блок управления (ЭБУ) подает сигналы на открытие или закрытие клапана в зависимости от данных, получаемых датчиком давления.

Помимо клапана, регулирующего давление наддува, в воздушном тракте непосредственно после компрессора (где давление максимально) может монтироваться предохранительный клапан. Целью его использования является защита системы от скачков давления воздуха, которые могут быть в случае резкого перекрытия дроссельной заслонки двигателя.

Избыточное давление, возникающее в системе, стравливается в атмосферу с помощью так называемого блуофф-клапана, либо направляется на вход в компрессор клапаном типа bypass.

Принцип работы автомобильной турбины

Как уже писалось выше, принцип действия турбонаддува в автомобиле основывается на использовании энергии, выделяемой отработавшими газами двигателя. Газы вращают колесо турбины, которое, в свою очередь, через вал передает крутящий момент колесу компрессора.

Видео — принцип работы двигателя с турбонаддувом:

Тот, в свою очередь, сжимает воздух и осуществляет его нагнетение в систему. Охлаждаясь в интеркулере, сжатый воздух попадает в цилиндры двигателя и обогащает смесь кислородом, обеспечивая эффективную «отдачу» мотора.

Собственно, именно в принципе действия турбины в автомобиле кроются ее достоинства и недостатки, устранить которые инженерам весьма непросто.

Плюсы и минусы турбонаддува

Как уже известно читателю, турбина в автомобиле не имеет жесткой связи с коленчатым валом двигателя. По логике, подобное решение должно нивелировать зависимость оборотов турбины от частоты вращения последнего.

Тем не менее, в реальности эффективность работы турбины находится в прямой зависимости от оборотов мотора. Чем сильнее открыта дроссельная заслонка, чем больше обороты мотора, тем выше энергия выхлопных газов, вращающих турбину и, как результат, больше объем воздуха, нагнетаемого компрессором в цилиндры силового агрегата.

Собственно говоря, «опосредованная» связь между оборотами и частотой вращения турбины не через коленвал, а через выхлопные газы, приводит к «хроническим» недостаткам турбонаддувов.

Среди них – задержка роста мощности мотора при резком нажатии на педаль «газа», ведь турбине нужно раскрутиться, а компрессору – дать цилиндрам достаточную порцию сжатого воздуха. Подобное явление называют «турбоямой», то есть моментом, когда отдача мотора минимальна.

Исходя из этого недостатка сразу исходит и второй – резкий скачок давления после того, как двигатель преодолевает «турбояму». Это явление получило название «турбоподхвата».

И главной задачей инженеров-мотористов, создающих наддувные двигатели, является «выравнивание» этих явлений для обеспечения равномерной тяги. Ведь «турбояма», по своей сути, обуславливается высокой инерционностью системы турбонаддува, ведь для приведения наддува «в полную готовность» требуется определенное время.

В результате потребность в мощности со стороны водителя в конкретной ситуации приводит к тому, что мотор не способен «выдать» все свои характеристики одномоментно. В реальной жизни это, например, потерянные секунды при сложном обгоне…

Видео — стенд для диагностики и настройки автомобильных турбин:

Безусловно, сегодня существует ряд инженерных ухищрений, позволяющих минимизировать и даже полностью исключить неприятный эффект. В их числе:

  • использование турбины с переменной геометрией;
  • использование пары турбокомпрессоров, расположенных последовательно либо параллельно (так называемые схемы twin-turdo или bi-turdo);
  • применение комбинированной схемы наддува.

Турбина, имеющая переменную геометрию, осуществляет оптимизацию потока выхлопных газов силового агрегата за счет изменения в режиме реального времени площади входного канала, через который они поступают. Подобная схема турбин очень распространена в турбонаддувах дизельных моторов. В частности, именно по этому принципу функционируют турбодизели Volkswagen серии TDI.

Схема с парой параллельных турбокомпрессоров используется, как правило, в мощных силовых агрегатах, построенных по V-образной схеме, когда каждый ряд цилиндров оснащен собственной турбиной. Минимизация эффекта «турбоямы» достигается за счет того, что две малые турбины имеют гораздо меньшую инерцию, нежели одна большая.

Система с парой последовательных турбин используется несколько реже двух перечисленных, но она же обеспечивает наибольшую эффективность за счет того, что двигатель оснащается двумя турбинами, обладающими различной производительностью.

То есть при нажатии на педаль «газа» в действие вступает малая турбина, а при росте скорости и оборотов подключается вторая, и они работают суммарно. При этом эффект «турбоямы» практически исчезает, а мощность нарастает планомерно сообразно ускорению и росту оборотов.

При этом многие автопроизводители используют даже не два, а три турбокомпрессора, как например компания BMW в своей схеме triple-turbo. А вот инженеры, проектировавшие суперкар Bugatti, вообще оснастили силовой агрегат сразу четырьмя последовательными компрессорами, что позволило достичь уникальных мощностных характеристик при вполне «гражданском» поведении мотора в рядовых режимах езды.

Схема так называемого комбинированного наддува или, как ее называют автопроизводители, twincharger, подразумевает совместное использование механического и турбонаддува. При малых оборотах двигателя наддув обеспечивается механическим нагнетателем, а турбина вступает в действие при увеличении числа оборотов. При этом механический нагнетатель отключается. По такой схеме работают наддувные моторы TSI компании Volkswagen.

Как видим, принципы работы турбонаддува достаточно просты и понятны. При этом сегодня автопроизводители всячески делают ставку на турбированные агрегаты малого рабочего объема, которые обеспечивают достаточную мощность при относительной экологической чистоте выхлопа.

Но не следует забывать и еще об одном серьезном недостатке – турбированный мотор испытывает гораздо большие нагрузки и, что вполне закономерно, имеет меньший моторесурс, чем безнаддувный агрегат. Соответственно, взвесив все преимущества и недостатки, и следует выбирать тот или иной силовой агрегат.

Посмотрите принцип работы гидрокомпенсатора клапанов двигателя автомобиля.

Прочитайте статью, рассказывающую о предпусковом подогревателе двигателя Бинар.

Что такое тосол и антифриз http://voditeliauto.ru/poleznaya-informaciya/obsluzhivanie/avtoximiya/antifriz/ili-tosol-raznica.html какая между ними разница.

Видео — как изготавливаются турбокомпрессоры:

Может заинтересовать:

voditeliauto.ru

Турбированный двигатель

Турбированный мотор – это силовой агрегат, в котором подача воздуха в цилиндры осуществляется посредством специального устройства – турбины. Мощность турбированного двигателя значительно больше, чем у обычного атмосферного. В этой статье мы расскажем, как работает турбированный двигатель, какие он имеет преимущества и недостатки, а также как правильно его эксплуатировать.

Принцип работы турбированного двигателя

Турбированный двигатель (будь то бензиновый или дизельный) конструктивно имеет некоторые отличия от своего атмосферного аналога. Главной особенностью любого турбированного двигателя является турбокомпрессор. Данное устройство состоит из специального вентилятора и турбины. Компрессор подключается к выхлопной системе автомобиля и через систему специальных труб принимает часть выхлопного газа на лопасти турбины. Турбина раскручивается под давлением, создаваемым выхлопным газом и приводит в движение вентилятор компрессора. Компрессор закачивает под давлением большое количество воздуха.

Увеличение количество и давление воздуха способствует лучшему сгоранию топлива, а значит, увеличению мощности двигателя. Таким образом, при меньшем объеме, турбированный двигатель способен иметь больше лошадиных сил, чем больший по объему атмосферный мотор.

Охлаждение турбированного двигателя отличается от охлаждения атмосферного. Прежде всего, в таких двигателях вместо радиатора применяется специальное устройство – интеркуллер. Он представляет собой тот же радиатор, однако в нем, вместо ОЖ циркулирует воздух. Иногда интеркуллер может дополняться вентилятором, для эффективности охлаждения потоком воздуха.

Видео - Работа ДВС как работает турбонаддув

Преимущества и недостатки турбированного двигателя

Как и любой другой двигатель, турбированный тоже обладает своими преимуществами и недостатками.

Преимущества:

1. Самое главное преимущество турбированного двигателя – высокая мощность. Пожалуй, это главная цель, которую получили при минимальном изменении конструкции двигателя. При одинаковом объеме с атмосферным двигателем, турбированный может выдавать мощность и крутящий момент на 70 процентов больше.

2. Турбокомпрессор позволяет снизить содержание вредных веществ в выхлопном газе, что делает такой двигатель намного экологичнее. Это связано с тем, что воздух в цилиндрах сгорает намного эффективнее и полностью, в связи с этим, количество выхлопных газов уменьшается, а то и вовсе пропадает по пути в компрессор.

3. Двигатель, оборудованный турбиной, имеет низкий уровень шума, в отличие от атмосферного аналога.

4. Турбированный двигатель можно установить практически на любой автомобиль. Это связано с тем, что его конструктивные особенности мало чем отличаются от обычного ДВС. А значит, при равном объеме, они имеет такие же габариты, что позволяет монтировать его на те же крепежные элементы. Данное свойство касается как бензиновые, так и дизельные двигатели.

Недостатки:

1. Пожалуй, это самый логичный недостаток из всех – повышенный расход топлива. Дело в том, что при потреблении большего объема воздуха, необходимо и соответствующее количество топлива. Решить эту проблему невозможно, так как двигатель, раскручиваясь быстрее, будет самостоятельно закачивать требуемый уровень топлива.

2. Очень большие трудности в эксплуатации. Они связаны с высокой чувствительностью качества топлива и моторного масла. Если атмосферный двигатель менее привередлив к этим показателям, то турбированный может запросто выйти из строя.

3. В дополнение ко второму недостатку можно отметить очень низкий срок службы масло и его фильтра. Дело в том, что турбированный двигатель строится на основе обычного ДВС, а значит, рассчитан на такой же пробег и количество оборотов. Так как турбированный двигатель чаще работает на повышенных оборотах, соответственно масло быстрее теряет свои свойства.

4. Большие цены. Суть данного вопроса начинается с того, что цена на турбину и ее комплектующие изделия достаточно высокая. Соответственно турбокомпрессор очень дорого ремонтировать, что не каждому по карману.

5. Есть некоторые особенности охлаждения турбины после долгой поездки. Дело в том, что она достаточно сильно перегревается и может остыть только на холостых оборотах. Поэтому, прежде чем глушить двигатель, ему дают поработать еще около двух минут.

6. Двигатель с турбокомпрессором в сборе стоит дороже своего атмосферного аналога на 20-30 процентов.

Как правильно эксплуатировать турбированный двигатель?

Если соблюдать все правила эксплуатации, то двигатель, оснащенный турбокомпрессором, может прослужить около 500 тысяч километров. Известны случаи, когда двигатель «переживал» собственный автомобиль. Кузов сгнивал, а мотор устанавливали на другой автомобиль и продолжали эксплуатировать.

  • Заливайте в бензобак только самое качественное топливо. Не заправляйтесь на сомнительных заправках. То же самое относится и  к моторному маслу. Некачественное масло очень быстро приведет к дорогостоящему ремонту турбированного двигателя. Помимо этого, необходимо чаще проверять уровень масла.
  • Работа на холостых оборотах, которые превышают нормируемые значения, дольше 30 минут недопустима. Если у вас холостые обороты выставлены на слишком больших или малых значениях, обязательно отрегулируйте карбюратор или перепрограммируйте систему впрыска топлива.
  • После каждого запуска турбированного двигателя, его необходимо прогревать не менее двух минут. Только затем можно начинать движение.
  •  Если после длительной поездки вы решили остановиться, то не глушите двигатель сразу. Необходимо выждать время, пока на холостых оборотах остынет турбокомпрессор (порядка 2-3 минут) и только после этого выключайте зажигание.
  •  Всегда своевременно проводите мероприятия, касающиеся технического обслуживания двигателя. Здесь имеется ввиду замена масла, расходных материалов.

Вот так устроен турбированный двигатель. Если вы не боитесь всех сложностей эксплуатации и повышенного расхода топлива, то можете без проблем установить на свой автомобиль подобный агрегат. Однако стоит отметить, что если вы планируете установку такого двигателя на свой автомобиль, то необходимо соответствующее переоформление двигателя в органах ГИБДД. 

vipwash.ru

Турбонаддув. Есть Плюсы и Минусы — DRIVE2

Двигатель с турбонаддувом. Есть Плюсы и Минусы

Турбонаддув является наиболее эффективной системой повышения мощности двигателя. Помимо повышения мощности турбонаддув обеспечивает экономию топлива и снижение токсичности отработавших газов. В данной статье мы рассмотрим бензиновый и дизельный двигатель с турбонаддувом, а также принцип работы и всего его плюсы и минусы.

Что такое турбонаддув?Турбонаддув — вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов.

Турбонаддув применяется как на бензиновых, так и на дизельных двигателях. Вместе с тем, наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения коленчатого вала. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов и соответствующий нагрев турбонагнетателя.

Отличительной особенностью двигателя с турбонаддувом является наличие: турбокомпрессора, интеркулера, регулятора давления наддува, предохранительного клапана и других элементов.

Турбокомпрессор — является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе.

Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа.

Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан. Клапан ограничивает энергию отработавших газов, направляя их часть в обход турбинного колеса, тем самым обеспечивает оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува.

Также может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана или перепускаться на вход компрессора с помощью байпас-клапана.

Принцип работы двигателя с турбонаддувомРабота системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма, с другой — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo и даже четыре турбокомпрессора — quad-turbo.

Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув моторов TSI от Volkswagen.

Минусы двигателя с турбонаддувомО плюсах мы поговорили в начале статьи, теперь расскажем про минусы двигателя с турбонаддувом. Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр.

Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя.

Наличие технически сложного турбонаддува двигателя делает мотор автомобиля более сложным, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

Источник vk.com/pubauto ! ВСЕМ МИРА И ДОБРА !

www.drive2.ru

Турбонаддув- что это такое и как он устроен

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

                       А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту,во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

                             Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». источник : www.drive.ru

Как работает турбонаддув

Турбо – магическое слово для каждого автолюбителя. Но все ли знают, как устроена турбина? В чем разница между турбиной и компрессором? Читайте, будет интересно!

Начнем с азов. Откуда берется мощность в двигателях внутреннего сгорания? От горения топливовоздушной смеси с последующим расширением объема и повышением давления, которое и толкает поршень вниз при рабочем такте. Чем больше топливовоздушной смеси сгорит – тем большее давление будет действовать на поршень, соответственно увеличится крутящий момент и мощность. Но как за единицу времени (пока открыты впускные клапаны) загнать в цилиндры больше воздуха? Ответ прост – под давлением!

Турбина или компрессор как раз и обеспечивают подачу воздуха во впускной коллектор двигателя под определенным давлением. Далее следует добавить туда больше топлива (изменением длительности открытия форсунок) – и вот уже в цилиндре содержится больше топливовоздушной смеси. Благодаря принудительному наполнению цилиндров, мощность двигателя легко можно поднять на 100%! Пример – 265-300-сильные моторы Audi S3, Mitsubishi Lancer Evolution, Subaru Impreza WRX STI, когда их обычные атмосферные собратья объемом 2-2,5л выдают около 130-170 сил.

В чем же разница между турбонаддувом («турбиной») и механическим наддувом («компрессором»)? Турбина представляет собой два вентилятора, соединенные между собой валом. На один из них (турбинное колесо) дуют выхлопные газы и заставляют его вращаться. Это вращение по валу передается другому вентилятору (насосное колесо), который уже втягивает воздух и направляет его во впускной коллектор двигателя. Компрессор устроен несколько иначе: у него есть насосная часть (в разном виде – вентилятор как в турбине, шнеки, похожие на сверло, или др.), но вместо турбинного колеса установлен механический привод от двигателя (в виде ремня или шестеренок).

В зависимости от давления наддува и прибавки в мощности по отношению к атмосферному аналогу, все турбины разделяют на несколько классов: низкого давления (до 0,6 бар, до +30% мощности), среднего давления (до 1,2 бара, до +50-60% мощности), и высокого давления (до 2-2,5 бара, + 80-100% мощности). Есть турбины и с более высоким давлением, но они используются только в спорте или в «жестком» тюнинге. Хотя способны обеспечить прибавку +200-300%! Компрессор обычно работает с давлением до 0,6-0,8 бар и дает прибавку в мощности +30-50%.

Но, к сожалению, механический компрессор – это уже динозавр в современном моторостроении. Его главное преимущество – линейность в отзывах и подаче воздуха из-за жесткой связи с коленвалом мотора. Но это и его главная проблема – больше потери двигателя на вращение компрессора. Последней компрессоры массово использовала фирма Mercedes в своих V-образных восьмерках для AMG – в крупных моторах потери мощности на компрессор порой достигали нескольких десятков «лошадей»!

Турбина лишена этого недостатка, ведь ее вращают выхлопные газы, поэтому лошадиные силы берутся в буквальном смысле «из воздуха и бесплатно»! Однако здесь зарыт основной недостаток турбины – инерционность срабатывания, или просто «турбояма». Для большей мощности необходимо больше воздуха, а его можно получить, только раскрутив турбину посильнее, для чего требуется достаточный напор выхлопных газов. Время, необходимое для «раскрутки» турбины, напрямую зависит от размеров и веса ее турбинного и насосного колес. Вспомните маховик: больше вес – сложнее раскрутить, но больше стабильность, а легкость означает быструю реакцию, но с небольшой отдачей. Между этими крайностями и разрываются конструкторы турбомоторов: либо маленькая турбина с быстрым откликом, но небольшой эффективностью, либо крупная турбина с большой прибавкой, но и с большими запаздываниями при работе. Однако для высоких оборотов маленькая турбина – что спрей от огня против большого пожара: давление высокое, а вот количество подаваемого воздуха мало. В таком случае надо использовать «пожарный гидрант» – пусть давление воздуха невысоко, но его количество достаточно.

Желание решить вышеперечисленные проблемы и привело к появлению системы «Twin Turbo»: выпускной коллектор мотора имеет два выходных отверстия для двух турбины разных по величине, а между ними – клапан управления потоком выхлопных газов. При небольших оборотах клапан направляет выхлоп на маленькую турбину, которая быстро раскручивается, и качает воздух, чуть ли не с холостых оборотов. А когда требуется больше мощности – нажмите педаль посильнее, клапан направит поток выхлопных газов на большую турбину, которая и обеспечит стабильную работу до самой отсечки. Такую конструкцию в 90-х использовал Nissan в модели Skyline GT-R на моторе RB26DETT, в 2000-х она применялась в Opel Vectra V6 OPC (там две турбины в некоторых режимах могли даже работать вместе). По схожему пути пошел и VW с мотором 1.4 TSI Twincharge, вот только вместо маленькой турбины был использован механический компрессор. Сегодня схожую конструкцию, но с тремя турбинами, использует BMW.

Шильдик Bi-Turbo подразумевает тоже две турбины, но отличие состоит в том, что эти турбины одинаковы по размеру и выхлопной коллектор мотора разделен на две независимые части. Эта конструкция используется в основном на моторах с большим объемом – ведь надо что бы они и тянули с «низов» (требуется маленькая турбина), но и не скисали на верхах (требуется большая турбина). Если же мы разделили мотор, то каждой турбине теперь надо обслуживать только свою часть, с объемом в 2 раза меньшим от общего. Примеры – Audi V6 2.7 Bi-Turbo, BMW (335) 3.0 Bi-Turbo – в их случае каждой турбине отводилось уже не 6 цилиндров, а всего 3 с рабочим объемом в 1,3-1,5 литра. По аналогичному принципу построен также мотор Mercedes V12 Bi-Turbo (на одну турбину 6 цилиндров) и двигатель Bugatti W16 (16 цилиндров, 4 турбины).

Почему не использовать Twin Turbo? Ответ стандартен – цена и простота. Система Bi-Turbo проще (нет управляющего клапана между турбинами), и более надежна. К тому же симметричные коллектора и турбины легче разместить в развале V-образного блока цилиндров. Однако Bi-Turbo не обладает той шириной спектра применения, который может обеспечить система Twin Turbo.

RPM

Autoua.net


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости