С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Крутящий момент электродвигателя


Что такое крутящий момент электродвигателя

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то асинхронные электродвигатели получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

  • статический (пусковой) – минимальный момент холостого хода;
  • промежуточный – развивает значение при работе двигателя от 0 величины оборотов до максимального значения в номинальной величине напряжения;
  • максимальный – развивающийся при эксплуатации двигателя;
  • номинальный – соответствует номинальным значениям мощности и оборотов.

Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

  • напряжения сети;
  • величину индуктивного и активного сопротивления;
  • зависимость от увеличения скольжения.

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

Выбор электродвигателя

Электродвигатель главная движущая сила электропривода. О том, какой электродвигатель выбрать для прямоходных механизмов рассказывается в этой статье

Вид электромеханизма Тип двигателя в комплектации
ATL 10, BSA 10

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

ATL 20-25-30-40

BSA 20-25-30-40

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

ATL 50-63-80

BSA 50-63-80

АС 3-х фазный

с тормозом и без

UAL 0 UBA 0 DS 24 B 12 B с тормозом и без

UAL 1-2-3-4

UBA 1-2-3-4

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

Основные технических характеристики

Перед выбором электродвигателя важно понимать следующие физические характеристики:

Номинальная мощность - механическая мощность, измеряемая на валу, выражается в единицах измерения Ватт или КилоВатт. Однако в некоторой продукции мощность исчисляют лошадинными силами. Номинальное напряжение - напряжение, которое должно подаваться на клеммы электродвигателя, в соответсвии со спецификациями.

Статический крутящий момент (пусковой крутящий момент) - минимальный крутящий момент, который двигатель может обеспечить, с ротором при холостом ходе и при номинальной подаче напряжения частоты.

Промежуточный крутящий момент - минимальное значение крутящего момента, который развивается от питания двигателя с номинальным напряжением и частотой, от 0 об/мин до скорости, соответствующей максимальному крутящему моменту.

Максимальный крутящий момент - максимальный момент, который двигатель может развить во время эксплуатации с номинальной подачей напряжения и частоты.

Номинальный крутящий момент - крутящий момент соответствует номинальной мощности и номинальному количеству оборотов.

Номинальный крутящий момент рассчитывается по формуле:

Pn - номинальная мощность, кВт

n- номинальное количество оборотов, об/мин

Синхронная частота вращения, вычисляется по след. формуле:

f - подача частоты, Гцр - количество пар полюсов

Диаграмма крутящих моментов

Условия эксплуатации

Влажность - электрооборудование должно эксплуатироваться при относительной влажности от 30% до 90% (без конденсации)

Необходимо исключить негативные последствия от случайного конденсата с помощью защищенного корпуса электрооборудования или, если необходимо, посредством дополнительных мер (например, встроенного нагревательного оборудования или системы кондицинирования, дренажных отверстий).

Высота и температура указаные в каталоге мощности предназначены для регулярного использования на высоте ниже 1000 м. над уровнем моря и при комнатной температуре от +5 оС до +40оС для двигателей с номинальной мощностью ниже 0,6 кВт, или при температуре от -15 оС до 40 оС для двигателей с номинальной мощностью, равной или превышающей 0,6 кВт. При других условиях эксплуатации (большей высоте и или температуре) значения изменяются в соответсвии с коэффициентом, указанным на графике.

Двигатели трехфазные или однофазные имеют направление движения по часовой стрелке. Против часовой - по запросу.

Напряжение - Частота: максимальное изменение подачи напряжения +/-10%. С этим допуском двигатели подают номинальную мощность. При долгосрочной эксплуатации с данными ограничениями возможно повышение температуры на 10 градусов С. Стандартная обмотка рассчитана на напряжение 230/400В и частоту 50 Гц. По запросу возможны другие значения напряжения частоты. Частота вращения - крутящий момент: за исключением исполнения с четырьмя полюсами, двигатели имеют стандартное исполнение. Не рекомендуется использовать крутящие моменты выше номинального.

Обмотка статора выполняется из эмалированного медного провода (класс Н, 200 градусов), с измененными полиамидоэфирами полиамидами.Класс изоляции F имеет пропитку полимерами, что обеспечивает высокую степень защиты от электростатического напряжения и механических нагрузок. Обмотка плотная, без воздушных мешков и с высокой степенью теплопередачи. Другие материалы из которых делается массовое производство обмоток имеют класс изоляции В, но по запросу мы ставим класс Н.

Двигатели тропического и морского исполнения: высокая степень защиты, которая используется для моторов, эксплуатирующихся в условиях тропического климата с высокой степенью влажности и неблагоприятных условиях эксплуатации обмотка покрывается слоем высококачественого глицерофталика, который имеет превосходные защитные характеристики.

Марка Фото Тип Напряжение и частота Диапазон габаритов и мощностей Примечания
М   Асинхронные трехфазные электродвигатели общепромышленного исполенения 

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Об/мин.: 3000/1500/1000/750

Габарит, мм: 50-160

Мощность, кВт: 0,02-18,7

Размеры 71-160 адаптированы для использования

с регулятором частоты. Вентилятор на валу, класс защиты IP 55F

DP   Асинхронные трехфазные многоскоростные электродвигатели

В/Гц: 400/50 +/- 10%В

Об./мин.: 3000/1500, 1500/1000, 1500/750,

3000/1000, 3000/750, 1000/750, 3000/750

Габарит, мм: 63-160

Мощность, кВт: 0,06-18,7

Вентилятор на валу электродвигателя, класс защиты IP55F
MQ    Асинхронные трехфазные электродвигатели с квадратным кожухом

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Об./мин.:1500

Габарит, мм: 63-90

Мощность, кВт: 0,18-1,5

Размеры 80-90 адаптированны для использования с регулятором частоты.

Вентилятор на валу, класс защиты IP55F

MM    Асинхронные однофазные электродвигатели с встроенным конденсатором

 В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 50-100

Мощность, кВт: 0,045 - 2,2

Вентилятор на валу. Класс защиты IP55F. Поставка с встроенным

или пристыкованным конденсатором.

MDC

MDV

 

 Асинхронные однофазные электродвигатели с центробежным выключателем

с реле выключения подачи напряжения

 В/Гц: 230/50 +/- 5%В

Об./мин.:3000/1500/1000

Габарит, мм: 63-100

Мощность, кВт: 0,187 - 2,2

Принудительная вентиляция. Класс защиты IP55F. Поставка с встроенным или

пристыкованным конденсатором. Центробежный выключатель. Встроенное реле подачи/отключения напряжения

MDE   Асинхронные однофазные электродвигатели с встроенным электронным реле

 В/Гц: 230/50 +/- 5%В

Об/мин: 3000/1500/1000

Габарит, мм: 63-100

Мощность, кВт: 0,187 - 2,2

Вентилятор на валу. Класс защиты IP55F. Поставка с встроенным или пристыкованным конденсатором. 

Снабжены электронным пусковым реле.

 МА   Асинхронные трехфазные электродвигатели с тормозом

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Об/мин.: 3000/1500/1000/750

Габарит, мм: 55-160

Мощность, кВт: 0,02 - 18,7

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

 MADP   Асинхронные трехфазные многоскоростные электродвигатели с тормозом

В/Гц: 400/50 +/- 10%В

Об./мин.: 3000/1500, 1500/1000, 1500/750,

3000/1000, 3000/750, 1000/750, 3000/500

Габарит, мм: 63-160

Мощность, кВт: 0,06 - 18,7

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

 MMA   Асинхронные однофазные электродвигатели с тормозом

 В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 50-100

Мощность, кВт: 0,09 - 2,2

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

MADV

MADC

 

Асинхронные однофазные электродвигатели с центробежным выключателем

с реле выключения подачи напряжения с тормозом

В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 63-100

Мощность, кВт: 0,187 - 2,2

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

MADE

 

Ассинхронные однофазные электродвигатели с встроенным электронным реле

с тормозом

В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 63-122

Мощность, кВт: 0,187 - 2,2

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

MV

 

Электродвигатели с векторным управлением (Серводвигатели)

Однофазная сеть:

В/Гц: 230/50-60 +/-10% В

Трехфазная сеть:

В/Гц: 400/50-60 +/-10% В

Об/мин.: 3000

Габарит, мм: 63 - 160

Момент, Н*м: 2,6 - 42

Сохранение момента при частоте вращения от 0 до максимальной. Высокая точность позиционирования.

Программирование через пульт или компьютер

MVC

MVS

 

Электродвигатели с встроенными энкодерами

Однофазная сеть:

В/Гц: 230/50-60 +/-10% В

Трехфазная сеть:

В/Гц: 400/50-60 +/-10% В

Об/мин.: 3000

 

Габарит, мм: 63 - 160

Момент, Н*м: 2,6 - 160

Сохранение момента при частоте вращения  от 0 до максимальной. Высокая точность позиционирования.

Принудительная вентиляция

MII

 

Электродвигатели с встроенными регуляторами частоты вращения

Однофазная сеть:

В/Гц: 230/50-60 +/- 10% В

Трехфазная сеть:

В/Гц: 400/50-60 +/-10% В

Количество полюсов: 2/4/6

Габарит, мм: 71 - 112

Момент, кВт: 0,12 - 4

Недорогой вариант электродвигателя с частотным управлением. Принудительная вентиляция Встроенный тормоз,

устройство тепловой защиты. Дистанционное управление.

Просмотров: 12133 | Дата публикации: Четверг, 13 июня 2013 05:41 |

Характеристики асинхронного электродвигателя, крутящий момент скольжения.

Кривая крутящего момента скольжения для асинхронного двигателя даёт информацию об изменении крутящего момента со скольжением. Скольжение определяется как отношение разности синхронной скорости и фактической скорости ротора к синхронной скорости устройства.

Изменение скольжения может быть достигнуто вместе с изменением скорости, когда скорость меняется, будет меняться и скольжение, и крутящий момент, соответствующий данной скорости, также будет изменяться. Кривая может быть описана в трёх режимах работы:

Моторный режим

Идёт подача в область статора, и двигатель всегда вращается медленнее синхронной скорости. Крутящий момент асинхронного двигателя меняется от нуля до крутящего момента полной нагрузки, так же как и скольжение.

Скольжение претерпевает изменения от нуля до единицы. При отсутствии нагрузки скольжение составляет ноль, а при состоянии покоя оно равно единице. Кривая показывает, что крутящий момент прямо пропорционален скольжению. Это означает, что чем больше скольжение, тем больше производимый крутящий момент, и наоборот. Линейные взаимоотношения сильно упрощают расчёт параметра двигателя.

Генерирующий режим

Асинхронный двигатель работает быстрее синхронной скорости, и он должен управляться основным движителем. Обмотка статора подсоединена к трёхфазной подаче, за счёт которой поступает электрическая энергия. В действительности, в данном случае, скольжение и крутящий момент отрицательны, так что двигатель получает механическую энергию и производит электроэнергию.

Асинхронный двигатель не часто используется как электрогенератор, поскольку ему нужна для такой работы реактивная энергия.

Реактивную энергию в таком случае пришлось бы подавать извне, и если бы двигатель работал медленнее синхронной скорости по какой-либо причине, он бы скорее потреблял электроэнергию, чем бы производил её. Так что асинхронные электрогенераторы стараются не использовать.

Разрывающий режим

Два провода или полярность поставляемого напряжения меняются, так что двигатель начинает вращаться в обратном направлении, в результате чего электродвигатель останавливается. Этот метод разрыва известен как торможение противовключением.

Метод применяют, когда нужно остановить двигатель в течение очень маленького промежутка времени. Кинетическая энергия, накопленная во вращающейся нагрузке, рассеивается в качестве тепла. Также двигатель всё ещё получает энергию от статора, которая также рассеивается в виде тепла.

В результате двигатель производит много тепловой энергии. Для этого статор отключается от подачи, до того как двигатель войдёт в разрывающий режим. Если нагрузка, которой управляет двигатель, ускорит двигатель в том же направлении, что и направление его вращения, скорость двигателя может возрасти до уровня выше синхронной скорости.

В этом случае он ведет себя как асинхронный генератор, который поставляет электроэнергию в сеть электроснабжения, которая стремится замедлить двигатель до синхронной скорости, в этом случае двигатель останавливается. Этот тип разрывающего принципа зовётся динамическим или регенерирующим разрыванием.

Крутящий момент скольжения, характеристики однофазного асинхронного электродвигателя

Из рисунка видно, что когда скольжение едино, переднее и заднее поле производят одинаковый крутящий момент, но его направление противоположно друг другу, так что производимый крутящий момент равен нулю, поэтому двигатель не может стартовать. Отсюда можно сделать вывод, что эти двигатели не запускаются сами, в отличие от трёхфазных.

Должны быть средства, чтобы обеспечить стартовый крутящий момент. За счёт некоторых средств можно достичь увеличения передней скорости устройства, в силу чего переднее скольжение будет уменьшаться, передний крутящий момент будет усиливаться, и обратный крутящий момент будет уменьшаться. В результате двигатель стартует.

Отсюда можно сделать вывод, что для старта однофазного двигателя, должна быть разница крутящего момента между передним и задним полем. Если крутящий момент переднего поля больше, чем заднего поля, то двигатель вращается вперед, или против часовой стрелки. Если крутящий момент заднего поля больше, то электродвигатель крутится назад, или по часовой стрелке.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Механические и электрические характеристики асинхронных электродвигателей

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных. Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся. Для примера рассмотрим АИР80В2У3.

Номинальная механическая мощность асинхронного электродвигателя

На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.

Номинальная активная электрическая мощность асинхронного электродвигателя

Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.

Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.

Номинальная полная электрическая мощность асинхронного электродвигателя

Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.

Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.

Номинальная реактивная электрическая мощность асинхронного электродвигателя

Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.

Q = √(S2 - P2)

Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:

Q = √(30462 - 26502) = 1502 ВАР

Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.

Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.

Частота вращения ротора асинхронного электродвигателя

На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.

Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду. Но поскольку двигатель асинхронный, то ротор вращается с отставанием на величину скольжения s.

Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:

s = ((n – n1)/n)*100%

Для нашего примера s = ((3000 – 2870)/3000)*100% = 4,3%.

Угловая скорость асинхронного двигателя

Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.

Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.

Линейная скорость асинхронного электродвигателя

Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:

v = ωR

Номинальный вращающий момент асинхронного двигателя

Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:

P = ωМ

Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:

М = FR

Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.

Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м. 

Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.

Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.

Андрей Повный


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости