С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Система вентиляции картерных газов


Принудительная вентиляция газов из картера

Казалось бы, сама по себе работа ДВС служит источником, осуществляющим сильное загрязнение атмосферы, а мы пытаемся говорить тут про вентиляцию. Однако не все так просто, мотору, как и всем остальным, тоже нужен свежий воздух. Обеспечивает его и система вентиляции картера.

О назначении системы вентиляции

Все проблемы, как всегда, таятся в мелочах. В данном случае это касается имеющихся зазоров между поршнем и блоком цилиндров двигателя. Казалось бы, конструкцией предусмотрены специальные элементы, минимизирующие эти зазоры. И все же, несмотря на уплотняющие кольца, происходит попадание продуктов сгорания топлива, его несгоревших частиц, паров воды в объем картера двигателя. Следствием этого является ухудшение качества масла и потеря его смазывающих свойств. Проявляется подобный эффект в том, что обычное масло становится водно-масляной эмульсией, а также происходит его разжижение. В цилиндрах двигателя, при его работе, создается повышенное давление, так что нет ничего удивительного, что газы вырываются оттуда с повышенным давлением. Следствием этого будет создание такого же повышенного давления в картере, что может привести к выдавливанию сальников и утечке масла.

Именно для предотвращения подобных явлений, описанных выше, предназначена система вентиляции картера. Она позволяет вывести из него прорвавшиеся отработанные газы, обеспечить нормальное давление, тем самым, повысить надёжность и долговечность двигателя.

Как происходит вентиляция картера

Как всегда в таких случаях, существует выбор.

Реализация данной системы может быть двух типов:

В первом случае, когда система вентиляции картера двигателя открытая, прорвавшиеся выхлопные газы удаляются наружу, за пределы силового агрегата. Простота и дешевизна этого способа компенсируется загрязнением окружающей среды.

Кроме того, следует знать, что открытая вентиляция:

  1. не работает при малой скорости и на холостом ходу;
  2. не справляется со своими обязанностями при высоких оборотах;
  3. через нее возможно засасывание атмосферного нефильтрованного воздуха при остывании двигателя;
  4. может послужить одной из причин увеличенного расхода масла, а также причиной замасливания мотора.

Закрытую или принудительную вентиляцию картера осуществляют тогда, когда пытаются уменьшить степень загрязнения, оказываемую автомобилем. Для этого устанавливается специальный клапан, благодаря которому, при принудительной вентиляции картера, попавшие туда выхлопные газы, выводятся во впускной коллектор двигателя. К недостаткам такой системы можно отнести:

  • усиленное загрязнение карбюратора и входных воздуховодов;
  • сильная тяга на высоких оборотах в системе отсоса отработанных газов, что может служить дополнительной причиной окисления масла.

К достоинствам следует отнести:

  1. уменьшенный расход масла;
  2. стабильную работу в зимний период за счет подогрева входного воздуха картерными газами;
  3. они же повышают детонационную стойкость двигателя за счет разбавления топливно-воздушной смеси.

Варианты создания принудительной очистки от картерных газов

Правда не все так просто, как кажется с первого взгляда. Существует два подхода, по которым может быть выполнена принудительная вентиляция картера. Из картера могут выводиться выхлопные газы, а возможно и обратное действие — приток воздуха снаружи. Пример того, как построена система принудительной вентиляции картера, основанная на отводе выхлопных газов, приведен выше. При этом прорвавшиеся отработанные газы, оказываются под действием разрежения во впускном коллекторе и поступают через маслоотделитель (1), клапан (2) и по шлангам, очистившись от частиц масла, попадают опять в цилиндры двигателя.

Вариант, когда система вентиляции построена на притоке свежего воздуха, приведен на рисунке ниже. В этом случае наружный воздух попадает в картер мотора, смешивается с картерным газами, и через специальный клапан PCV поступает обратно в цилиндры мотора. Построенная таким образом система вентиляции, позволяет избежать попадания продуктов работы ДВС в атмосферу. Именно такой подход используется современными автопроизводителями, при проектировании и изготовлении автомобилей. Для поддержания нормальной работы мотора на холостом ходу, клапан PCV запирает выход газов из картера, при глубоком разрежении в трубопроводе.

Непременным атрибутом современного ДВС является вентиляции картера, выполненная чаще всего как закрытая система. Она позволяет повысить надёжность работы мотора и уменьшить отрицательное воздействие выхлопа автомобиля на атмосферу.

znanieavto.ru

СИСТЕМА ВЕНТИЛЯЦИИ КАРТЕРНЫХ ГАЗОВ

При работе поршневого двигателя некоторое количество отработавших газов из камеры сгорания поступают в картер двигателя. Эти газы повышают давление в картере, что отрицательно сказывается на работоспособности уплотнительных элементов двигателя.

Также эти газы ухудшают свойства моторного масла, что приводит к нарушению нормальной работы системы смазки. Эти явления частично устраняет система вентиляции картерных газов (PCV- positive crankcase ventilation). В технической документации по ремонту и обслуживанию автомобилей этой системе уделяется мало внимания, несмотря на то, что на современных двигателях нарушение нормальной вентиляции картера может существенно влиять на работоспособность не только системы управления двигателем, но и двигателя в целом.

Для нормальной работы системы вентиляции картера необходимо два важных момента: первый – подвод свежего воздуха; и второй – отбор вредных газов. Поэтому системы вентиляции картерных газов по способу подвода свежего воздуха можно разделить на системы открытого и закрытого типа. Открытые системы вентиляции картера забирают свежий воздух напрямую из окружающей среды. Закрытые системы для подвода свежего воздуха используют элементы системы питания (впускной тракт после воздушного фильтра). По способу отвода картерных газов все системы подразделяются на эжекционного и принудительного принципа действия. Эжекционные системы вентиляции картера отводят картерные газы в окружающую среду. Системы принудительной вентиляции картера подводят картерные газы к впускному коллектору.

Все автомобильные двигатели до 1961 года имели открытую систему вентиляции эжекционного принципа действия. Для отвода газов из картера применялась эжекционная трубка, располагавшаяся вдоль двигателя и заканчивавшаяся у нижнего края поддона картера. При движении автомобиля у края трубки создается легкое разрежение, улучшающее вентиляцию картера. В 1952 году профессор Хааген-Смит (A. J. Haagen-Smit) из Калифорнийского Технологического Института доказал, что основой смога являются несгоревшие углеводороды, а бензиновые двигатели являются основным источником этих углеводородов. Компанией GENERAL MOTORS были проведены исследования, в результате которых выяснилось, что основное количество этих веществ поступает в атмосферу через эжекционную трубку системы вентиляции картерных газов. Результатом этих исследований стало то, что начиная с 1961 г. все автомобили, продаваемые в Калифорнии, должны были быть оборудованы системой вентиляции принудительного принципа действия, а начиная с 1962 г. действие этого правила распространилось и по всей территории США.

На всех современных двигателях данная система является системой принудительного принципа действия. Далее речь будет идти только о системах вентиляции картерных газов бензиновых двигателей. Эти двигатели характеризуются тем, что во впускном тракте установлена дроссельная заслонка для регулирования мощности двигателя в зависимости от условий движения автомобиля.

Наиболее распространенные системы принудительной вентиляции картера двигателей европейского производства до середины 90-х годов характеризуются наличием двух каналов отбора картерных газов. Первый канал вводится в пространство за дроссельной заслонкой, второй – перед дроссельной заслонкой. При работе двигателя на режиме холостого хода дроссельная заслонка полностью закрыта, и создаваемое поршневой группой двигателя разрежение находится в пространстве за ней. Поэтому для обеспечения нормальной вентиляции картера на этом режиме использовался первый канал системы вентиляции картерных газов. Однако из-за высокого разрежения во впускном коллекторе, для ограничения количества отводимых картерных газов, этот канал вентиляции картера сообщается с впускным коллектором через калиброванное отверстие (дроссель). Диаметр дросселя подбирается таким образом, чтобы обеспечить нормальную вентиляцию картера и для поддержания удельного расхода масла в ТУ.

Однако при открытии дроссельной заслонки с ростом оборотов двигателя увеличивается количество отработавших газов в картере двигателя, и система вентиляции на режиме холостого хода не справляется со своими функциями. Для устранения этого явления применяется второй канал отбора картерных газов, подключаемый к впускному коллектору до дроссельной заслонки. В этом случае этот канал вентиляции начинает работать только при открытии дроссельной заслонки, не влияя на работу данной системы на режиме холостого хода. Канал, обеспечивающий вентиляцию картера на холостом ходу двигателя, продолжает подавать картерные газы во впускной коллектор. Такие системы вентиляции картерных газов применялись на большинстве автомобилей европейского производства практически до конца прошлого века. Например, все двигатели ВАЗ, практически все двигатели автомобилей OPEL рабочим объемом 1.2-1.6 л (рис.1). Достоинством этих систем вентиляции картера является их относительная простота. Их основной недостаток – грубая корректировка количества отбираемых картерных газов в зависимости от режима работы двигателя.

При постоянно ужесточающихся нормах токсичности, совершенствовались системы управления бензиновых двигателей с впрыском топлива и контролем состава топливовоздушной смеси. Двигатели стали работать на более обедненных смесях. Это вызвало необходимость более точного регулирования количества картерных газов, поступающих во впускной коллектор в зависимости от частоты вращения коленчатого вала. В таких системах имеется только один канал подвода картерных газов к впускному тракту, в пространство до дроссельной заслонки. Такие системы устанавливались на двигателях OPEL 1.8-2.0 л. с распределенным впрыском (18SEH, C20NE), на двигателях VOLKSWAGEN 1.4-1.6л.(AEE, AEX, APQ). Основным недостатком является то, что все картерные газы проходят через регулятор холостого хода и корпус дроссельной заслонки, вызывая их быстрое загрязнение. Вследствие этого довольно часто возникали проблемы с оборотами холостого хода по причине загрязненности регулятора холостого хода или корпуса дроссельной заслонки.

В настоящее время наиболее широкое распространение получила система вентиляции картерных газов, использующая в качестве регулирующего элемента клапан переменного сечения. Родоначальником такой организации вентиляции картера двигателя по праву считается компания GENERAL MOTORS, разработавшая первый регулируемый клапан (клапан PCV) в 1958 г. Ранние системы вентиляции картера с применением клапана PCV представляли собой системы принудительной вентиляции картера открытого типа. Примером применения такой вентиляции может служить система вентиляции картера автомобиля ЗИЛ 130. В данной системе все картерные газы подводятся в пространство за дроссельной заслонкой и дозируются в зависимости от величины разрежения во впускном коллекторе. Свежий воздух поступает через маслозаливную пробку, в которой установлен фильтр. Дальнейшая эволюция этих систем привела к тому, что данные системы стали системами закрытого типа (рис.2). Примерами такой организации вентиляции картера могут служить системы вентиляции картерных газов большинства двигателей автомобилей японского и американского производства (двигатели V6D1 ISUZU, 6G74 6G72 Mitsubishi), а также на части двигателей европейского производства (двигатель AWT концерна VAG). Основным элементом данной системы, дозирующим количество отбираемых картерных газов, является клапан PCV. Это устройство, по сути, – регулируемый клапан переменного сечения. Проходное сечение клапана зависит от разрежения во впускном коллекторе, причем, эта зависимость является обратной, т.е. чем выше разрежение, тем меньше проходное сечение клапана, и наоборот. Конструкция клапана PCV постоянно усовершенствовалась для оптимизации количества отбираемых картерных газов в зависимости от режима работы двигателя. На данный момент можно выделить три основных конструктивных решения построения этого устройства: шариковый, золотниковый и мембранный. Первые два типа отличаются только конструкцией дозирующего механизма и работают в принципе одинаково, поэтому принцип работы будет рассмотрен на примере золотникового клапана (рис. 3). При выключенном двигателе клапан полностью закрыт, и газы не поступают во впускной коллектор на режиме холостого хода. Под действием высокого разрежения золотник клапана занимает такое положение, при котором проходное сечение клапана наименьшее (минимальный отбор картерных газов) На режиме средних нагрузок, под действием меньшего разрежения клапан приоткрывается, тем самым увеличивая количество проходящих во впускной коллектор картерных газов. У этих клапанов есть один существенный недостаток – на режимах максимальных нагрузок эти типы клапанов не обеспечивали нормальной вентиляции картера. От этого недостатка удалось избавиться применением мембранного клапана, т.к. у этого типа клапанов увеличено проходное сечение, они способны более точно дозировать количество отбираемых картерных газов во всем диапазоне рабочих режимов двигателя. Мембранные клапана PCV устанавливаются на двигатели AUDI А8 (AUW), PEUGEOT 307 (EW10AF). Система вентиляции, использующая данный тип клапана, представлена на рис.4

На двигателях, оснащенных турбокомпрессором, в систему вентиляции картерных газов устанавливается предохранительный клапан, задача которого – не допустить увеличения давления в системе вентиляции картера выше заданной величины. В случае увеличения давления предохранительный клапан открывается, и картерные газы поступают на вход компрессора и далее, через интеркуллер, во впускной коллектор.

Для уменьшения загрязнения дроссельной заслонки, регулятора холостого хода, а также для уменьшения удельного расхода масла необходимо картерные газы очищать от частиц масла, поступающих из картера. Для этой цели практически во всех системах вентиляции картера современных двигателей применяется маслоотделитель. Все маслоотделители, вне зависимости от конфигурации, по своей конструкции являются лабиринтными, т.е. газы, проходящие через это устройство, меняют направление своего движения, и частицы масла, как более тяжелые, оседают на стенках лабиринта, откуда возвращаются в поддон картера по специальным каналам. По своему расположению маслоотделители находятся как внутри двигателя, так и могут быть отдельными навесными устройствами (большинство двигателей 1.4- 1.6л. концерна VAG). Внутри двигателя маслоотделители могут находиться в клапанной крышке (двигатели АВС, AAH от AUDI), в блоке цилиндров (двигатели AWT, AEB концерна VAG).

На двигателях, использовавших карбюраторную систему питания, неисправности системы вентиляции картера, как правило, не оказывали слишком существенного влияния на работу систем зажигания и питания. На современных двигателях, использующих системы впрыска топлива и отвечающих нормам токсичности ЕВРО-3 и выше, нарушение нормальной работы системы вентиляции картера может приводить к полной потере работоспособности системы управления двигателем. В этом случае система управления переключается на аварийный режим работы (режим «ХРОМАЙ ДОМОЙ») для обеспечения возможности доехать до ближайшего автосервиса. Поэтому при диагностике систем управления двигателей целесообразно уделять должное внимание вентиляции картера.

Константин МАКАРЕНКО

Журнал “Авто-Мастер” декабрь 2010 года

http://a-master.com.ua/archives/1677

a-master.com.ua

Устройство автомобилей



Вентиляция картера предназначена для удаления картерных газов, образующихся в результате прорыва продуктов сгорания топлива через зазоры между гильзой и поршневыми кольцами и их взаимодействия с парами масла.

В газах содержатся загрязняющие масло серистые соединения и пары воды, которые образуют серную и сернистую кислоты, значительно ухудшающие качество масла. Пары воды вызывают вспенивание масла и образование эмульсии, что затрудняет поступление масла к трущимся поверхностям. Прорвавшиеся в картер газы повышают в нем давление, что может вызвать утечку масла через уплотнения картерного пространства.

Недопустимо также проникновение газов под капот двигателя, а затем в кузов и кабину автомобиля, так как содержащиеся в газах вредные вещества опасны для пассажиров и водителя. Отсос картерных газов уменьшает старение масла, а также, создавая разрежение в поддоне, предотвращает возможность утечки масла через уплотнения.

В автомобильных двигателях применяется вентиляция картера двух типов:

  • открытая – с отводом картерных газов в окружающую среду;
  • закрытая – с отсасыванием газов во впускную систему двигателя.

Открытая вентиляция (рис. 1) осуществляется под действием разрежения, возникающего в газоотводящей трубке вследствие относительного перемещения воздуха при движении автомобиля. Чтобы вместе с картерными газами не уносились частицы масла применяется специальный сапун лабиринтного типа, на стенках которого масляные капли оседают и стекают в поддон.

Недостатком открытой системы вентиляции картера является ее низкая эффективность, а также отравление окружающей среды вредными для здоровья человека и живой природы веществами.

В закрытых системах газы могут отводиться в воздухоочиститель до карбюратора или непосредственно во впускной трубопровод. Отвод газа через воздухоочиститель не создает требуемой интенсивности отсоса при минимальных частотах вращения коленчатого вала и полной нагрузке. Кроме того, проход картерных газов через карбюратор вызывает осмоление его каналов, жиклеров и подвижных деталей. Поэтому более предпочтительной является система с отсосом газов непосредственно во впускной трубопровод двигателя, в котором всегда имеется разрежение.



Система вентиляции, показанная на рис. 2, работает следующим образом: под действием разрежения во впускном трубопроводе 10 картерные газы поднимаются вверх и через угольник 9 и шланг 5 попадают в корпус маслоотделителя, закрытый крышкой 1. Между крышкой и корпусом находится резиновая мембрана 2, поджимаемая пружиной 3 к корпусу. Оседающие на дне корпуса маслоотделителя частицы масла по трубке 6 сливаются в картер двигателя.

С помощью мембраны 2, которая находится с одной стороны, под давлением атмосферного воздуха, а с другой – под давлением картерных газов и пружины, в картере поддерживается избыточное давление.

На рис. 3 показана схема вентиляции картера карбюраторного двигателя автомобилей марки «ВАЗ». Здесь картерные газы отсасываются через маслоотделитель 7 и шланг 6 в вытяжной коллектор 4 воздушного фильтра 3. Из вытяжного коллектора на холостом ходу и при малых нагрузках двигателя (когда разрежение в воздушном фильтре невелико) картерные газы поступают через шланг 2 и золотник 1 под дроссельные заслонки карбюратора.

При остальных режимах работы двигателя картерные газы поступают в карбюратор через воздушный фильтр 3. В маслоотделителе 7 масло выделяется и по отводной трубке 8 стекает в масляный поддон. Пламегаситель 5 предотвращает проникновение пламени в картер двигателя при возможных вспышках в карбюраторе.

***

Классификация и маркировка моторных масел


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

k-a-t.ru

Система вентиляции картера двигателя

В столь сложном механизме, каковым является современный двигатель внутреннего сгорания, не может быть каких-то мелочей. Любая система, даже если она имеет простейшее устройство, выполняет строго определенную функцию, внося свой вклад в бесперебойную работу силового агрегата. О существовании многих из систем рядовой автолюбитель даже не подозревает, хотя нарушение их нормального функционирования самым серьезным образом оказывает влияние на работоспособность двигателя в целом. Важнейшая роль в ДВС отведена так называемой вентиляции картера. О том, каковы ее назначение, принцип работы и состав компонентов, поговорим в данной статье.

Не секрет, что между деталями цилиндро-поршневой группы существуют строго определенные зазоры, соответствующие установленным разработчиками допускам. Какими бы минимальными ни были эти зазоры, через них из камеры сгорания в картер проникают несгоревшие частицы, которые смешиваются с масляными парами, образуя так называемые картерные газы. Они оказывают негативное влияние на качество находящегося в картере моторного масла, которое с ростом пробега автомобиля неуклонно ухудшается, теряются смазывающие свойства. Стоит отметить, что подобный эффект проявляется как у масел бюджетного класса, так и у дорогих образцов от именитых брендов. Попадающие в картер двигателя пары топлива и воды неизбежно разжижают масло, превращая его в масляную эмульсию. Не стоит забывать и о том, что в процессе работы в цилиндрах мотора создается очень высокое давление. В связи с этим газы, вырывающиеся с огромной силой, попадают в картер, грозя выдавливанием сальников и последующим вытеканием масла.

Благодаря системе вентиляции картера выводятся прорвавшиеся отработавшие газы, а также обеспечивается и поддерживается нормальное рабочее давление, что благотворно влияет не только на состояние моторного масла, но и на надежность, продолжительность работы двигателя.

Виды систем вентиляции картера

На сегодняшний день принято выделять два типа систем вентиляции картера автомобильного двигателя: открытая, или эжекционная (отработанные газы выводятся наружу напрямую из картера при помощи специальной эжекционной трубки) и закрытая, или принудительная (PCV – positive crancase ventilation).

Система вентиляции картера открытого типа характерна для силовых агрегатов автомобилей, выпускавшихся в прошлом веке и снятых в настоящее время с производства. Особенностью такой системы является то, что прорвавшиеся из цилиндров газы выводятся за пределы двигателя, непосредственно в окружающую среду. Указанный способ вентилирования картера мотора отличает простота и дешевизна конструкции, что, впрочем, «компенсируется» загрязнением атмосферы.

Помимо указанного недостатка, открытая вентиляция картера имеет еще ряд отрицательных моментов. Подобная система малоэффективна при движении на малых скоростях и абсолютно бездейственна на неподвижном автомобиле с работающим на холостых оборотах двигателем. Кроме того, через открытую систему вентиляции картера при охлаждении сильно разогретого двигателя возможно подсасывание неотфильтрованного атмосферного воздуха. Нередки случаи, когда на автомобилях с большими пробегами система открытого типа становилась основной причиной возросшего расхода масла и, как следствие, замасливания силового агрегата.

Более современной и эффективной альтернативой открытой вентиляции картера является закрытая (принудительная) вентиляционная система. Одной из ключевых деталей такой системы является клапан, выводящий попавшие в картер двигателя газы во впускной коллектор. Разные автопроизводители по-разному реализуют идею закрытого вентилирования, но в большинстве случаев каждая из схем предусматривает наличие одних и тех же элементов: клапана вентиляции (клапан PCV), маслоотделителя (может быть несколько) и соединительных патрубков. Стоит отметить, что системы вентиляции картерных газов для бензиновых и дизельных моторов, хотя и обладают определенными особенностями, в целом имеют схожие конструкции.

Работа системы PCV

Принцип работы системы принудительной вентиляции довольно прост. При возникновении разрежения во впускном коллекторе под его воздействием открывается клапан PCV и картерные газы подаются на впуск, а затем, смешиваясь с воздухом, в цилиндры двигателя. Для препятствования проникновения паров масла в камеру сгорания система предусматривает установку маслоотделителя. Современные моторы оборудуются сложной системой маслоотделителей. Так, маслоотделитель лабиринтного типа способствует замедлению движения газов из картера. Это обеспечивает оседание маслянистых капелек на стенки и последующее их стекание в картер.

Дальнейшая очистка масла от картерных газов происходит при помощи центробежного маслоотделителя, который придает отработавшим газам вращение. Под влиянием центробежной силы частицы масла задерживаются на стенках и затем стекают в картер. Окончательная очистка масла от выхлопных газов производится в выходном лабиринтном успокоителе.

Клапан PCV – особенности конструкции

Ключевая роль клапана PCV в системе закрытой вентиляции картера заключается в функции регулировки давления газов в картере путем их перепуска во впускной коллектор. В режиме ХХ и при торможении двигателем разрежение в коллекторе максимально (дроссель лишь чуть приоткрыт), однако количество картерных газов не так велико, поэтому для полноценной вентиляции достаточно канала с небольшим проходным сечением. В таком режиме под действием большого разрежения золотник клапана полностью втягивается, но при этом канал перепуска картерных газов в значительной степени перекрывается, пропуская лишь небольшое их количество.

При нажатии на педаль акселератора и при высоких нагрузках количество отработавших газов в картере существенно возрастает. Золотник клапана занимает такое положение, чтобы обеспечить максимальную пропускную способность канала. Существует еще и так называемый режим обратной вспышки, при котором горящие газы из цилиндра прорываются во впускной коллектор. В этом случае клапан PCV находится под действием давления, а не разрежения, поэтому полностью закрывается, исключая возможность поджога находящихся в картере паров топлива.

Признаки неисправности системы вентиляции картерных газов

Неудовлетворительная работа системы PCV может являться одной из причин течи масла. Забившиеся патрубки системы вентиляции создают избыточное давление в картере двигателя, в результате чего отработавшие газы вместе с маслом будут искать альтернативные пути выхода. На начальных стадиях масло начнет гнать через отверстие для щупа, также возможно образование масляных пятен в местах уплотнений и соединений (прокладки, хомуты). Совсем неприятный вариант – выдавливание сальников.

Если перестанет нормально функционировать маслоотделитель системы вентиляции картера, то масляные отложения появятся на дроссельной заслонке и даже на воздушном фильтре. Некорректная работа самого клапана PCV может привести к неправильному учету поступающего воздуха, и, как следствие, приготовлению переобогащенной смеси.

avtonam.ru


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости