С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Скорость вращения турбины автомобиля


Интересная статья о турбинах — бортжурнал Subaru B4 ☆RSK TwinTurbo MT 280hp☆ 2002 года на DRIVE2

Когда люди говорят о гоночных машинах или мощных спортивных авто, рано или поздо всплывает тема турбин(турбо компрессоры также устанавливают на больших дизельных моторах). Турбина может существенно увеличить мощность двигателя без значительного увеличения его размеров/веса, что является основным преимуществом которое сделало турбины столь популярными.

В данной главе вы узнаете о том как турбокомпрессор увеличивает отдачу двигателя работая в экстримальных условиях. Также вы узнаете как вестгейты, керамические крыльчатки турбин и шарикоподшипники помогают турбокомпрессорам выполнять свою работу еще лучше. Турбокомпрессоры — тип усиленной впускной системы. Они сжимают воздух во впускном тракте. Преимущество сжатия воздуха в том что двигатель получает возможность «запихнуть» в камеру сгорания больший объем воздуха, а большему кол-ву воздуха нужен больший объем топлива. Таким образом мы получаем больше мощности от каждого взрыва в каждом циллиндре. Турбированный двигатель производит больше мощности по сравнению с таким же НЕ турбированным двигателем. Турбина может значительно улучшить соотношение мощность/вес для вашего двигателя.

Для раскрутки/буста турбина использует поток выхлопных газов которые вращают крыльчатку турбины, которая в свою очередь соединена(находится на том же валу) с крыльчаткой аэро компрессора. Скорость вращения турбины может достигать150тыс. об./мин что почти в 30 раз быстрее скорости вращения самого двигателя. Естественно что при таких условиях работы, температура турбины тоже очень высока.

Основы.

Одним из верных способов увеличения мощности двигателя является увеличение объема газо-бензиновой смеси которое он может сжечь. Этого можно достичь увеличив кол-во циллиндров, или сделать имеющиеся циллиндры больше. Иногда подобные изменения могут не дать должного эффекта, в отличие от турбины, которая является более простым, компактным решением для увеличения мощности, особенно если речь идет о производителях тюнинговых решений.

Турбины позволяют двигателю сжигать большее кол-во газо-топливной смеси путем большего нагнетания ее в имеющуюся камеру сгорания. По сравнению с обычным двигателем, турбина может нагнетать до 50% больше газотопливной смеси в камеру сгорания. Установкой турбины можно достичь 40-го % прироста мощности двигателя. Справедливо ожидать 50-ти процентного прироста мощности, но все не так замечательно, и вот почему. Установка турбины накладывает определенные ограничения на выпускную систему, тк выхлопные газы проходят через крыльчатку турбины, тем самым увеличивается сопростивление потоку выхлопных газов, что в свою очередь отнимает часть КПД от взрывов в циллиндрах которые происходят одновременно.

Турбокомпрессор и двигатель.

Турбокомпрессор устанавливается на выпускном коллекторе. Выхлопные газы раскручивают крыльчатку турбины которая работает по принципу газотурбинных двигателей. Вал турбины соединен с валом воздушного компрессора который схематически находится между воздушным фильтром и впускным коллектором. Компрессор нагнетает воздух в камеру сгорания двигателя.

Поток выхлопных газов проходящих сквозь крыльчатку турбины, разгоняет ее. Чем больше давление выхлопных газов оказываемое на крыльчатку турбины, тем быстрее она раскручивается.

На другом конце вала турбины установлен воздушный компрессор который нагнетает воздух в камеру сгорания. Компрессор работает по принципу центрифуги — он раскручивает воздух от центра к краям крыльчатки по ходу вращения.

Тк вал турбины раскручивается до огромных скоростей(150тыс об./мин.), необходимо обеспечить его надежную поддержку/закрепление. Большая часть подшипников взорвалась бы на таких скоростях, по этому в большей части турбокомпрессоров используется жидкий подшипник(маслянный клин). Данный тип подшипника поддерживает вал на тонком слое масла которое подается под давлением вокруг него(между валом и стенкой подшипника). Это делается по 2-м причинам:1.Масло охлаждает вал и прилегающие части турбокомпрессора

2.Этот метод позволяет избежать большой силы трения между валом и стенками подшипника турбокомпрессора

Конструкция турбокомпрессора.

Одной из главных проблем связанных с использованием турбокомпрессоров является то что они не могут моментально обеспечить рабочее давление наддува(буст) когда вы нажимаете на педаль акселератора. Проходит определенное время до того как турбина разгонится и начнет обеспечивать рабочее давление наддува. Это явление называется лаг(задержка), то есть мы ощущаем лаг когда давим на педаль акселератора, затем спустя определенное время(лаг) машина выстреливает вперед.Для уменьшения турбо лага необходимо уменьшить силу инерции вращающихся частей, главным образом путем уменьшения их веса. Это позволит турбине и компрессору разгоняться быстрее, и раньше опеспечивать рабочее давление наддува. Одним из верных способов уменьшения силы инерции турбины и компрессора является уменьшение размера самого турбокомпрессора. Не большой турбокомпрессор обеспечит рабочее давление наддува на низких оборотах двигателя значительно быстрее, но не сможет обеспечить нормальное давление наддува на высоких оборотах, когда двигателю необходим значительно больший объем воздуха.Также для небольших турбокомпрессоров существует опасность слишком быстрого вращения на высоких оборотах двигателя, когда большой объем выхлопных газов проходит сквозь турбину.Большие турбокомпрессоры могут обеспечить достаточное давление наддува на высоких оборотах двигателя, но им присущь больший турбо лаг тк их турбина и компрессор имеют больший вес и как следствие разгоняются дольше. К счастью есть несколько способов побороть эту проблему.У большинства автомобильных турбокомпрессоров есть вестгейт, который позволяет использовать небольшие турбокомпрессоры для уменьшения лага, а также предотвращает их слишком быстрое вращение на высоких оборотах двигателя. Вестгейт — это клапан который позволяет проходить потоку выхлопных газов в обход крыльчатки турбины. Вестгейт распознает давление наддува.Если давление слишком высоко это может означать что турбина вращается слишком быстро, в этом случае вестгейт отводит(открывает клапан) часть потока выхлопных газов от крыльчатки турбины, что позволяет снизить скорость вращения турбины.В строении некоторых турбокомпрессоров вместо жидких подшипников(маслянного клина) используются шарикоподшипники. Но это не обычные подшипники — это супер точные подшипники созданные с использованием передовых технологий/материалов призванных допустить их использование на таких скоростях и температурах присущих турбокомпрессорам. Такие подшипники позволяют валу турбины вращаться с меньшим трением, чем в обычных жидких подшипниках. Также шарикоподшипники позволяют использовать меньший и более легкий основной вал, что тоже положительно сказывается скорости раскручивания вала, и уменьшении турбо лага.

Керамическая крыльчатка легче стальной, используемой в большинстве турбокомпрессоров. Это тоже позволяет турбине раскручиваться быстрее, что в свою очередь помогает уменьшить турбо лаг.

Компоненты турбокомпрессора.

В строении некоторых турбосистем используются два турбокомпрессора. Меньший турбокомпрессор раскручивается до рабочего давления наддува значительно быстрее, уменьшает лаг, пока больший турбокомпрессор раскручивается и срабатывает на высоких оборотах обеспечивая большее давление наддува.Когда воздух сжимается — он подогревается и расширяется. Собственно часть от общего увеличения давления турбокомпрессором — результат нагрева воздуха до его попадания в камеру сгорания. Для того чтобы увеличить мощность двигателя необходимо «впихнуть» в камеру сгорания как можно больше молекул воздуха, а не просто воздух под большим давлением.

Интеркулер способствует увеличению мощности двигателя путем охлаждения сжатого воздуха который поступает из компрессора, перед его попаданием в камеру сгорания. Это означает что турбокомпрессор способен обеспечить определенное давление наддува, а та же система с интеркулером способна обеспечить то же давление наддува, но уже охлажденного сжатого воздуха(в котором больше молекул чем в НЕ охлажденном воздухе).

Основные термины:Порог наддува(Boost threshold) — минимальные обороты двигателя при которых создается положительное давление наддува во впускном коллекторе, при максимальной нагрузке на двигатель.

Турболаг — время между «тапкавпол» и моментом когда турбокомпрессор опеспечивает рабочее давление наддува.

Какая турбина САМАЯ лучшая? Нет лучшей турбины. Как правило все тюнинговые турбины делятся на эти несколько классов:1.Турбины позволяющие немного увеличить мощность двигателя2.Турбины позволяющие значительно увеличить мощность двигателя

3.Быстро раскручивающиеся турбины

Что необходимо заменить для установки тюнинговой турбины? Как правило для установки тюнинговой турбины необходимо заменить топливный насос, форсунки, и программу управления двигателем.(отсебятина: и, как мне кажется — выхлопную систему)

Существует ли какой-нить метод доработки турбины, который не потребует других доработок? Существует. К стоковой турбине можно применить процедуру port&polish(шлифовка и полировка внутренней поверхности улиток турбокомпрессора). Также на короткое время можно установить буст контроллер, но по большому счет установка бустконтроллера глупая затея.

Какая турбина лучше всего подходит для небольшого увеличения мощности двигателя? Наиболее широко применяемые турбины для этих целей: VF30/VF34 и 16G

Какая турбина лучшая в классе «быстрораскручивающихся» турбин? Наиболее широко применяемые турбины для этих целей: стоковые турбины с отшлифованными и полированными внутренними поверхностями улиток.

Выбераем турбу:

Для того чтобы сделать правильный выбор, сначала необходимо определить какой именно ТИП турбин больше всего подходит для ваших нужд. По этому мы обсудим самые распространенные типы турбин. Собственно здесь представленна базовая информация, не стоит использовать ее как ОСНОВНОЙ источник информации для выбора турбины, тк существует еще куча факторов влияющих на подобный выбор. Для более верного выбора проконсультируйтесь с продавцом турбин, или мастерами тюнинга(в таких конторах как Плеяда, или Альпина).Обычная турбина.Обычная турбина в сущности насос который «запихивает» воздух под давлением во впускную систему двигателя, в результате наддув сжатого воздуха поздоляет увеличить мощность двигателя, к чему, как правило мы и стремимся. Но не стоит забывать что больше мощности даст больше тепла, и внутренние компоненты двигателя должны соответствовать уровню тюнинга. Замена стоковой турбины на большую — самый простой, быстрый, дешевый и правильный метод. Обычно для подобных замен на турбовых версиях субар используют следующие турбины: VF-30/34/22 и 16/18/20G. Подобный тюнинг еще называют Bolt-on.Твинскролловая турбинаТвинскролловая турбина может быть установлена только с равнодлинным выпускным коллектором. Это обусловлено внутренним устройством данной турбины, а также требованием чтобы давление потока выхлопных газов на крыльчатку турбины было всегда одинаковым, что позволит твинскролловой турбине раскручиваться быстрее по сравнению с обычной турбиной такого же размера. Данное требование(установка равнодлинного выпускного коллектора) является обязательным к исполнению, не позволяйте сбить вас столку недобросовестной рекламой твинскролловых турбин. Если сравнить твинскролловую турбину в характеристике которой указано 500 CFM(Кубических футов в минуту — это характеристика воздушного потока прогоняемого в единиху времени конкретным воздушным компрессором), и обычную турбину в характеристике которой указаны те же 500CFM, твинскролловая турбина раньше обеспечит рабочее давление наддува. Ну и собственно если вы выбрали 2-е подходящие по размерам турбины, одна из которых твинскролловая, другая обычная — твинскролл будет лучшим выбором если вы готовы смириться со значительными затратами на выхлопную систему, и предпочитаете турбину которая раскручивается быстрее обычной.В отличие от установки обычной более производительной/большей турбины — твинскролл требует больше затрат. В основном из-за необходимости использования равнодлинного выпускного коллектора, ап-пайпа другой конструкции, и возможно другого картера(тк в равнодлинном коллекторе трубы идущие от правой половины двигателя — длиннее, и если оставить стандартный картер — коллектор просто не встанет) и маслоуловителя. Куирт Крафорд из «Crawford Performance» недавно провел эксперимент, на Легасе с твинскролловой турбиной GT32. Он заменил равнодлинный коллектор на обычный, а также доработанный ап-пайп на стоковый, и замерил результаты. По ошушениям и на основе полученных результатов он обнаружил ухудшение отклика турбины на 750 об/мин, то есть увеличился лаг. Это должно послужить уроком для всех кто считает что установка твинскролловой турбины возможна и без лишних затрат на выпускную систему.

Еще одной важной особенностью установки твинскролловых турбин(и, соответственно равнодлинного коллектора) является изменение звука выхлопа. Равнодлинный коллектор сильно меняет звук выхлопа убирая столь популярное урчание опозитного двигателя. Для яростных поклонников родного звука субаровского мотора — только это может сыграть не в пользу установки твинскролла.

Взято с www.sti-club.su. Автор перевода: empty3000.Оригинал NASIOC форум:

forums.nasioc.com/forums/showthread.php?t=1218459

Как работает турбокомпрессор.

Воспользуйтесь строкой поиска, чтобы найти нужный материал

Главная Авто Как работает турбокомпрессор. Турбокомпрессоры часто применяются в дизельных автомобилях. Турбина может существенно увеличить мощность автомобиля, без особого увеличения веса, этот факт делает её очень популярной. Давайте вкратце рассмотрим как это происходит.В процессе горения участвует кислород,  а турбокомпрессор позволяет сжимать воздух,  поступающий в цилиндр. Таким образом, становится возможно больше воздуха поместить в цилиндр, а больший объём воздуха позволит большему количеству топлива сгореть. Теоретически, теперь каждый цилиндр может отдать больше мощности при сгорании топлива и увеличить соотношение мощность-вес двигателя.Турбокомпрессор, используя энергию отработавших газов, раскручивает турбину, которая раскручивает воздушный насос. Скорость вращения турбины достигает 150 000 оборотов в минуту,  что примерно в 30 раз превышает скорость вращения двигателя автомобиля.

Работа двигателя с турбокомпрессором .

Самый простой способ увеличить мощность двигателя, это увеличить количество воздуха и топлива, поступающего в двигатель. Один из способов это добавление цилиндров, или увеличение их объёма. Иногда, внести такие изменения нет возможности и проще установить турбину.Турбокомпрессор позволяет двигателю сжигать больше топлива,  «упаковывая» больше воздуха в уже имеющийся цилиндр. Типичное значение увеличения давления составляет от 6 до 8 фунтов на квадратный дюйм. При нормальном атмосферном давлении 14,7 фунта на квадратный дюйм, несложно подсчитать, что мы получаем прирост воздуха,  поступающего в двигатель, более 50%.Теоретически мы ожидаем получить прирост мощности около 50%. В реальной жизни можно получить от 30 до 40%. Одной из причин такого несовпадения является то, что для раскрутки турбины требуется энергия.

 

Устройство турбокомпрессора.Турбокомпрессор крепится к выпускному коллектору двигателя. Выхлопные газы раскручивают турбину, которая работает как газотурбинный двигатель.Турбина соединена валом с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор — это тип центробежного насоса, который втягивает воздух своими лопастями и толкает его наружу. Он увеличивает давление воздуха, поступающего в цилиндр. Выхлопные газы проходят через лопасти турбины, заставляя её вращаться, и чем больше выхлопных газов проходит через лопасти, тем больше скорость вращения.Для вращения со скоростью 150 000 об/м вал должен хорошо поддерживаться.Большинство подшипников просто не выдержат таких скоростей и разрушатся, поэтому используются гидравлические подшипники. Это тип подшипника в котором непосредственную нагрузку от вала воспринимает тонкий слой жидкости. Таким образом, решается два вопроса:  первый — это охлаждение вала и остальных частей турбогенератора, второй — это уменьшение трения между валом и другими частями.

Основные части турбокомпрессора.

Одна из проблем связанная, с турбокомпрессором состоит в том, что он не обеспечивает мгновенное увеличение мощности при нажатии на педаль газа. Один из способов уменьшить это отставание — это уменьшить инерцию вращающихся частей,  в основном за счёт уменьшения их массы и размера. Это позволит турбине и компрессору быстрее ускоряться. Меньший турбокомпрессор будет обладать лучшей приёмистостью на низких оборотах двигателя, но не будет в состоянии дать значительный прирост на высоких оборотах. Также существует опасность разрушения турбины и компрессора на слишком больших оборотах.Большинство автомобильных турбокомпрессоров оснащены перепускными клапанами (wastegate),  который позволяет использовать турбокомпрессор меньшего размера, сокращая задержку и предотвращая слишком быстрое вращение на высоких оборотах. Wastegate — это клапан, который позволяет выхлопным газам обходить турбину,  он чувствителен к давлению наддува. Если давление становится слишком высоким, это показатель того, что турбина вращается слишком быстро, таким образом, перепускной клапан создаёт путь для обхода выпускными газами, лопастей турбины.Некоторые турбокомпрессоры используют шариковые подшипники для поддержки вала турбины. Но это необычные шариковые подшипники, это высоко прецизионные шариковые подшипники, сделанные из улучшенных материалов, способные справиться с высокой скоростью и температурой. Они позволяют валу турбины вращаться с меньшим трением, чем гидродинамические подшипники, применяемые в большинстве турбокомпрессоров.Они также позволяют слегка уменьшить и облегчить используемый вал,  что позволяет турбине быстрее ускоряться,  ещё больше уменьшая отставание.Керамические лопасти турбины легче чем металлические,  применяющиеся в большинстве турбокомпрессоров,  они тоже способствуют более быстрому ускорению и уменьшению задержки.

 

В некоторых двигателях применяют два турбокомпрессора разных размеров. Меньший раскручивается очень быстро, тем самым уменьшая отставание,  а больший схватывает на более высоких оборотах, чтобы обеспечить больший прирост мощности.При сжатии давление воздуха увеличивается,  а температура повышается. Чтобы увеличить мощность двигателя, необходимо увеличить количество молекул воздуха в цилиндре, необязательно повышая давление. Интеркулер — это система для охлаждения нагнетаемого воздуха, является дополнительным компонентом,  который выглядит как радиатор. Входящий воздух движется через герметичные проходы внутри охладителя, в то время как холодный воздух, нагнетаемый лопастями вентилятора, обдувает радиатор. Интеркулер дополнительно увеличивает мощность двигателя, охлаждая нагнетаемый турбиной воздух, прежде чем он попадёт в двигатель.Турбокомпрессор помогает двигателю работать на высоте, где воздух менее плотный. Обычные двигатели будут иметь пониженную мощность на больших высотах, потому что в двигатель на каждом такте будет поступать меньше кислорода.На старых авто с карбюратором, автоматически увеличивается подача топлива при увеличении воздуха,  поступающего в цилиндры. В современных инжекторных двигателях то же есть такой механизм, он основан на анализе выхлопных газов с помощью датчиков кислорода, так же известных как лямбда-зонд.Если турбокомпрессор поставить на инжекторную машину, система топливоподачи может не обеспечить достаточное количество топлива. Причин может быть две: либо программное обеспечение не позволит сделать это, либо топливный насос. 

А вы знаете что...

средняя температура возле турбинного колеса: в дизельных двигателях 800 градусов Цельсия, а в бензиновых 1000 градусов! Такой температуры хватит чтобы расплавить стекло! ротор турбокомпрессорного двигателя нового поколения может вращаться со скоростью до 220000 об./мин. Для примера ротор реактивного двигателя самолёта Боинг 747 крутится со скоростью 7000 об./мин.

Турбокомпрессор раскручивается с 20000 до 150000 менее чем за 1 сек.  

Источник: http://auto.howstuffworks.com/turbo.htm

Основы турбонаддува

Вернуться

Основные принципы работы турбодвигателя.

Как известно, мощность двигателя пропорциональна количеству топливовоздушной смеси, попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется, чтобы маленький двигатель выдавал мощности как большой или мы просто хотим, чтобы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае, когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора - самым эффективным методом будет использование турбокомпрессора. Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:

- Воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1) - Внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность. - Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха, ведет еще и к меньшей склонности к детонации нашей будущей топливовоздушной смеси. - После прохождения интеркулера воздух проходит через дроссель, попадает во впускной коллектор (4) и дальше на такте впуска - в цилиндры нашего двигателя. Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем. - После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллектор (5), где этот поток горячего (500С-1100С) газа попадает в турбину (6) - Проходя через турбину, поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор, и, тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работы компрессора через вал турбины.

В зависимости от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее: Блоуофф (перепускной клапан) - это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью не допустить выход компрессора на режим surge. В моменты, когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, ввиду значительной нагрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины чтобы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения. Представляет собой механический клапан установленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельные моторы используют турбины без вейстгейтов. Тем не менее, подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов, которое уходит через вал на компрессор и, тем самым, управляем давлением наддува, создаваемым компрессором. Как правило, вейстгейт использует давление наддува и давление встроенной пружины, что бы контролировать обходной поток выхлопных газов.

Встроенный вейстгейт состоит из заслонки, встроенной в турбинный хаузинг (улитку), пневматического актуатора, и тяги от актуатора к заслонке.

Внешний гейт представляет собой клапан, устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину ввиду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.

Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована, если давление масла в вашей системе превышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно, чтобы центральный картридж турбины был ориентирован сливом масла вниз. Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла. Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно также обеспечить минимум неравномерности по вертикали линии подачи воды, а также несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов. Правильный подбор турбины является ключевым моментом в постройке турбомотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливовоздушной смеси, которая через него проходит за единицу времени, определив целевую мощность, мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха. Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя, на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее, за счет большего рабочего диапазона работы двигателя и быстрого выхода турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора. Втулочные турбины были самыми распространенными в течение долгого времени, тем не менее, новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.

Отзывчивость турбины на дроссель в значительной степени зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.

Шарикоподшипниковые турбины также требуют значительно меньшего потока масла через картридж для смазки подшипников. Это снижает вероятность утечек масла через сальники. Такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя. Trim это общепринятый термин, используемый при описании турбинного или компрессорного колеса турбины. Например, вы часто могли слышать фразу У меня стоит турбина GT2871R с 56 Trim. Так что же это такое? Trim это величина, показывающая соотношение между индюсером (inducer) и эксдюсером (exducer) турбинного или компрессорного колеса. Еще более точно, это соотношение их площадей. Диаметр индюсера - это диаметр колеса крыльчатки в той ее части, где воздух входит в крыльчатку, а эксдюсер это диаметр колеса, где воздух из него выходит. Конструкция турбины такова, что индюсер компрессорного колеса меньше чем его эксдюсер, а турбинного - наоборот:

Например: Турбина GT2871R (Garrett part number 743347-2) имеет компрессорное колесо с: Диаметр индюсера: 53.1мм Диаметр эксдюсера: 71.0мм Таким образом Trim для него будет:

Trim крыльчатки, как компрессора, так и турбины напрямую влияет на ее производительность. Чем больше величина trim тем, как правило, больший поток воздуха может пройти через крыльчатку. A/R (Area/Radius) описывает геометрическую характеристику компрессорного или турбинного хаузинга. Технически A/R означает отношение сечения канала хаузинга, деленое на расстояние от центра вала до центра этого сечения:

Значение A/R имеет разное влияние на производительность турбинной части и компрессорной. A/R компрессора практически не влияет на его производительность. Как правило, хаузинги с большим A/R применяются для оптимизации отдачи в приложениях с малым наддувом, а хаузинги с меньшим A/R компрессора используются для больших значений наддува. A/R турбины, наоборот, значительно влияет на ее производительность, определяя ее способность пропустить тот или иной поток воздуха. Использование меньшего A/R увеличивает скорость потока в турбинном хаузинге, приходящего на турбинное колесо. Это дает возможность увеличить отдачу турбины на низких нагрузках, приводит к более быстрому отклику на дроссель и снижает значение минимальных оборотов двигателя, требуемых для выхода турбины на рабочий наддув. Тем не менее, меньший A/R приводит к тому, что газ попадает на крыльчатку практически по касательной, что уменьшает максимальный поток газа который турбинное колесо способно пропустить. Это также увеличивает подпор газа перед турбиной, ухудшает продувку мотора на высоких оборотах, повышает EGT и как результат всего этого снижает максимальную пиковую мощность. При выборе конкретного хаузинга для вашего мотора, в любом случае приходится идти на компромисс балансируя между ранним наддувом и пиковой мощностью. Также надо учитывать внутреннюю конструкцию хаузинга. Далекая от оптимальной форма канала, неточности литья, возможные переходы с прямоугольного сечения на круглое - все это, в определенной, мере влияет на эффективность горячего хаузинга. Опытным путем установлено что, например, турбинные хаузинги TiAL с круглым входом имеют лучшую аэродинамику и при том же A/R обеспечивают лучшую продувку на верхах по сравнению с традиционными чугунными хаузингами с прямоугольным входом.

Также при выборе A/R следует принимать во внимание эффективность всего выпускного тракта после турбины. Использование прямоточных выхлопных систем большого сечения позволяет использовать чуть меньший А/Р турбины и при той же пиковой мощности получить более ранний выход на наддув. В основном все турбоколлекторы делятся на два типа: литые log-style и трубные сварные:

Дизайн турбоколлектора довольно сложный процесс т.к. очень много факторов должно быть принянто во внимание. Ниже приведены общие советы для достижения максимальной производительности: - Старайтесь использовать максимально возможный радиус поворотов, т.к. как каждый крутой изгиб ранера поглощает часть полезной энергии потоков газа. - Добивайтесь равной длины ранеров для избежания перекрестного наложения выхлопных импульсов. - Избегайте резких изменений сечения - В сводах ранеров избегайте резких углов для сохранения направления и скорости потока - Для лучшей отзывчивости турбины избегайте больших объемов коллектора, для большей пиковой мощности, наоборот, может быть использован больший объем коллектора - Оптимально выбирайте длину ранеров и объем коллектора в зависимости от объема мотора и диапазона оборотов на которых необходимо получить наилучшую отдачу Литые коллектора чаще всего применяются в заводских гражданских компоновках, в то время как сварные трубные коллекторы чаще применяются в спортивных вариантах моторов. Оба вида имеют свои достоинства и недостатки. Литые коллекторы обычно весьма компактны и более дешевы при массовом производстве. Трубные коллекторы могут быть изготовлены в малых сериях или единичных экземплярах для конкретного случая и не требуют такой сложной предварительной организации производства как литые. Правильно разработанный и изготовленный трубный коллектор обеспечивает длительный срок эксплуатации и значительное улучшение производительности по сравнению с литым log-style коллектором. Твинскольный коллектор может быть как литым так и сварным трубным и используется в паре с соответствующим твинскольным турбинным хаузингом.

Назначение такой конструкции в разделении цилиндров, чьи рабочие циклы могут пересекаться между собой и для лучшего использования выхлопного импульса каждого цилиндра. Наример, на 4-х цилиндровом моторе с порядком работы цилиндров 1-3-4-2, цилиндр #1 начинает свою фазу выпуска пока еще не закончена выпускная фаза в цилиндре #2, и его выпускной клапан открыт, а в зависимости от величины перекрытия, в этот момент может быть открыт и впускной клапан цилиндра #2. В нетвинскрольном коллекторе импульс высокого давления из цилиндра #1, попав в коллектор, сбивает течение потока цилиндра #2 не позволяя ему хорошо продуться в своей начальной стадии впуска. Также при этом, сам поток из цилиндра #1 теряет часть своей энергии. Правильной компоновкой твинскрольного коллектора, в данном случае, будет сгруппировать цилиндры #1 и #4 в одной половине коллектора, а цилиндры #2 и #3 - в другой. Пример твинскрольного турбинного хаузинга:

Более эффективное использование энергии выхлопных газов в твинскрольных системах ведет к улучшению отзывчивости турбины на малых оборотах и большей мощности на больших. Прежде чем приступить к обсуждению степени сжатия и давлению наддува, важно понять, что такое кнок или детонация. Детонация - это опасный процесс, вызванный спонтанным быстротекущим сгоранием топливновоздушной смеси в цилиндрах. Этот процесс вызывает резкие и большие по величине всплески давления в камере сгорания ведущие со временем к механическому разрушению поршневой группы и износу вкладышей. Основными факторами, вызывающими детонацию являются: - Естественная склонность самого мотора к детонации. Поскольку все моторы имеют свои конструкционные особенности, нет простого и однозначного ответа как лучше. Форма камеры сгорания, расположение в ней свечи зажигания, диаметр цилиндра и степень сжатия, качество распыла топлива - все это влияет на склонность или, наоборот, устойчивость конкретного мотора к детонации. - Внешние условия. В турбомоторах параметры всасываемого турбиной воздуха, его температура и влажность, а также параметры воздуха, который попадает в цилиндры после турбины, влияют на склонность к детонации. Чем выше наддув, тем больше температура воздуха, поступающего в цилиндры, и тем больше вероятность возникновения детонации. Интеркулер с хорошей эффективностью охлаждения сжатого воздуха значительно помогает в борьбе с детонацией. - Октановое число топлива. Октан - это величина показывающая стойкость топлива к возникновению детонации. Октан типовых гражданских бензинов находится в диапазоне 92-98 единиц. Специальные спортивные виды топлива имеют октан 100-120 и выше единиц. Чем выше октан, тем более стойким является топливо к возникновению детонации. - Настройки блока управления. Угол зажигания и соотношение воздух/топливо значительным образом влияет на склонность или устойчивость мотора к детонации в различных режимах. Теперь, когда мы разобрались с общими факторами связанными с детонацией, поговорим о степени сжатия. Степень сжатия (СЖ) определена как:

Где: CR - степень сжатия Vd - объем цилиндра Vcv - объем камеры сгорания СЖ заводских моторов будет разной для атмосферного и турбомотора. Например стоковый мотор Honda S2000 имеет СЖ равную 11.1:1, в то время как турбомотор Subaru WRX имеет СЖ 8.8:1. Существует много факторов влияющих на максимально допустимую СЖ. Нет одного простого ответа какой она должна быть. В общем случае, СЖ должна быть выбрана максимально возможной для предотвращения детонации, с одной стороны, и обеспечения максимального КПД двигателя, с другой. Факторами влияющими на выбор СЖ в каждом конкретном случае являются: октановое число применяемого топлива, давление наддува, температура воздуха в предполагаемых режимах эксплуатации, форма камеры сгорания, фазы клапанного механизма и противодавление в коллекторе. Многие современные атмосферные моторы имеют хороший дизайн камеры сгорания и большую стойкость к детонации, что при правильной настройке блока управления позволяет устанавливать на них турбонаддув не меняя заводскую степень сжатия. Обычной практикой при турбировании атмосферных моторов является увеличение мощности на 60-100% относительно заводской. Тем не менее, для значительных значений наддува требуется уменьшение заводской СЖ. AFR или соотношение воздух/топливо. При обсуждении вопроса настройки двигателя, выбраный AFR, наверное, наиболее часто встречающийся вопрос. Правильный AFR имеет крайне высокое влияние на общую производительность и надежность мотора и его компонентов. AFR определен как соотношение количества воздуха зашедшего в цилиндр к количеству зашедшего в него топлива. Стехиометрическая смесь это смесь при которой происходит полное сгорание топлива. Для бензиновых двигателей стехиометрией является соотношение 14.7:1. Это означает что на каждую часть топлива приходится 14.7 частей воздуха. Что означают понятия бедная и богатая смесь? Более низкие значения AFR означают меньшее количество воздуха относительно топлива и такая смесь называется богатой. Аналогично, большие значения AFR означают больше воздуха относительно топлива и называются бедной смесью. Например: 15.0:1 = бедная 14.7:1 = стехиометрическая 13.0:1 = богатая Бедная смесь ведет к повышению температуры горения смеси. Богатая - наоборот. В основном атмосферные моторы достигают максимальной отдачи на смеси, несколько богаче стехиометрии. На практике ее держат в диапазоне 12:1...13:1 для дополнительного охлаждения. Это хороший AFR для атмосферного мотора, но он может в некоторых случаях быть крайне опасным в случае с турбомотором. Более богатая смесь снижает температуру в камере сгорания и повышает стойкость к детонации, а также снижает температуру выхлопных газов и увеличивает срок службы турбины и коллектора. Реально при настройке существует три способа борьбы с детонацией: - уменьшение давление наддува - обогащение смеси - использование более позднего зажигания. Задачей настройщика является поиск наилучшего баланса этих трех параметров для получения максимальной отдачи и ресурса турбомотора. Эта и следующая часть будут несколько сложнее первых двух, в них мы рассмотрим составляющие компрессорной карты, как оценить соотношение давлений и массовый расход воздуха вашего двигателя, а так же как рисовать точки на компрессорной карте для правильно подбора турбокомпрессора. И...положите рядом с собой калькулятор - он вам понадобится при изучении этой и следующей статьи :) Для начала обозначим и разъясним некоторые термины, с которыми нам придется столкнуться в этой статье: Понятие абсолютного и относительного давления. Под абсолютным давлением мы будем понимать давление относительно полного вакуума. Соответственно оно может быть только больше или равным нулю. На Земле на уровне моря оно принято равным одной атмосфере или 1атм. Под относительным давлением мы будем понимать давление относительно атмосферного. Соответственно оно может быть как положительным так и отрицательным, в зависимости от того больше или меньше оно чем атмосферное. Давайте рассмотрим их на примере давления во впускном коллекторе двигателя. Все наверняка видели в своей жизни приборы показывающие наддув. Такие приборы показывают именно относительно давление. На двигателе, работающем на холостом ходу, они показывают разряжение -0.65..-0.75атм. На наддуве мы можем видеть значения 1.0...2.0 и выше атмосфер. Всё это значения относительного давления. Абсолютные значения будут всегда на 1.0 больше, поскольку мы должны добавить одну атмосферу атмосферного давления, относительно которой прибор и показывает свои значения. Т.е. на ХХ абсолютное давление будет равно +0.25..+0.35, а на наддуве, соответственно 2.0..3.0. Компрессорная карта это график, описывающий конкретные характеристики компрессора в различных режимах его работы. Среди этих характеристик мы разберем: эффективность компрессора, диапазон массового расхода воздуха, возможности работы на разных давлениях наддува, а так же скорость вращения вала турбины. Ниже приведена типичная компрессорная карта с названиями ее составляющих.

Рассмотрим их по порядку: По вертикальной оси у нас расположен Pressure Ratio, или соотношение давлений, величина, описываемая как отношение абсолютного давления на выходе из компрессора к абсолютному давлению на его входе: PR = Pcr/Pin Где: PR - соотношение давлений Pcr - абсолютное давление на выходе компрессора Pin - абсолютное давление на входе компрессора *Очень грубо говоря эта величина просто показывает во сколько раз компрессор сжал воздух. Как рассчитать Pressure Ratio: К примеру мы хотим рассмотреть ситуацию работы компрессора при 0.7 атм наддува в коллекторе. Для начала вспомним что наддув это относительное давление, а мы везде оперируем только абсолютным. Поэтому сразу добавляем к нему 1.0 атмосферного давления и дальше имеем в виду что у нас 1.7атм абсолютного давления в коллекторе . В нашем случае, при нормальном атмосферном давлении на входе в турбину, соотношение давлений будет таким: PR = Pcr/Pin = 1.7/1.0 = 1.7 Но на самом деле все несколько сложнее. В виду наличия в системе воздушного фильтра давление на входе в компрессор, как правило, несколько меньше атмосферного. В зависимости от размера и качества фильтра оно может быть меньше на 0.02-0.10атм. Допустим у нас оно меньше атмосферного на 0.05атм. Тогда наша формула приобретет следующий вид: PR = 1.7/(1.0-0.05) = 1.7 / 0.95 = 1.79 Повторим еще раз - для вычисления Pressure Ratio нам надо знать наддув для которого мы его считаем и разряжение на впуске перед компрессором. После этого PR = (1.0 + давление на выходе компрессора) / (1.0 - разряжение на впуске) В случае спортивной машины без воздушного фильтра, мы можем принять наш делитель всегда равным единице и просто считать PR = 1 + ДавлениеНаВыходе. По горизонтальной оси у нас расположен массовый расход воздуха. Это величина, показывающая, массу воздуха, проходящую за единицу времени через компрессор и, соответственно, дальше через двигатель. Исторически это величина на компрессорных картах выражается в lb/min или по-русски в фунтах воздуха за минуту времени. Фунт это 0.45кг, а минута это 60 секунд :) Поскольку, как мы уже проходили, мощность двигателя напрямую зависит от количества топливо-воздушной смеси которая проходит через него, массовый расход, это, одна из главных характеристик которую мы можем получить, изучая компрессорную карту. При прохождении через мотор 1 фунта воздуха в минуту, современные моторы вырабатывает в среднем 9-11 лошадиных сил мощности. Соответственно даже беглый взгляд на компрессорную карту может нам сказать, на какую потенциальную мощность мы можем рассчитывать с этой турбиной. На приведенном выше примере, область работы компрессора заканчивается примерно на 52 фунтах, соответственно эту турбину грубо можно сразу оценить на 500лс. Граница Surge это крайняя левая линия компрессорной карты. Работа компрессора левее этой границы, т.е. за пределами обозначенной компрессорной картой, связанна с нестабильностью воздушного потока, всплесками и провалами наддува. Длительная работа компрессора в таком режиме приводит к преждевременному выходу его из строя в виду большой переменной нагрузки на подшипники и крыльчатку компрессора.

Турбина может попасть в режим Surge в одном из двух случаев. Первый самый распространенный - при резком закрытии дросселя, когда массовый расход воздуха через мотор резко падает, но турбина все еще вращается достаточно быстро. Это мгновенно перебрасывает нас влево по компрессорной карте в зону Surge. Но быстрое срабатывание Blow Off клапана восстанавливает расход воздуха через турбины, выпуская избыток наддутого воздуха в атмосферу. Второй случай - возникновение Surge на режиме полной нагрузки, обычно на низких оборотах, когда турбина только начинает выходить на наддув. Он значительно более опасен, поскольку может продолжаться относительно долго, особенно на высоких передачах. Как правило, это связанно со слишком большой скоростью вращения турбины и большом создаваемом давлении в компрессоре, при относительно малом общем расходе воздуха через мотор. Обычно наблюдается на гибридах с маленькой горячей частью, маленьким A/R горячей части и большой компрессорной частью. Еще одним способом, помогающим снизить вероятность попадания компрессора в зону Surge является использование компрессорного хаузинга с так называемым Ported Shroud. Фактически это обводные воздушные каналы, встроенные в компрессорный хаузинг:

Благодаря этим каналам удается сместить границу Surge левее по компрессорной карте, за счет того что часть воздуха может выйти из компрессора назад во впуск. Это позволяет при прочих равных использовать больший компрессор на меньшей турбинной части без возникновения эффекта Surge. Ниже приведено сравнение двух компрессорных карт: с обычным компрессорным хаузингом и со встроенными обводными каналами:

Видно, что есть довольно значительная область карты красного цвета, которая является рабочей для турбины с портированным компрессорным хаузингом, но при этом находится левее границы Surge карты синего цвета, соответствующей обычному хаузингу. Как это выглядит в реальной жизни? Ниже приведено фото двух турбин 30й серии, первая 3071 без Ported Shroud, вторая 3076 с заводским Ported Shroud

Так же бывает возможность доработки заводского компрессорного хаузинга под Ported Shroud, если с завода он не был изготовлен. Например в случае GT3582R это выглядит так:

Посмотрим еще раз на нашу компрессорную карту и рассмотрим последние три составляющих: Предельная граница эффективности, Зоны эффективности компрессора и Скорость вращения турбины

Как линия Surge ограничивает карту слева, так граница эффективности ограничивает ее справа. Garrett на своих картах указывает область работы компрессора до 60-58% эффективности. Все, что находится правее этой границы, будет иметь эффективность ниже 58% и использование компрессора в этой области теряет смысл. За этим пределом начинается неоправданно большой нагрев сжимаемого компрессором воздуха, а скорость вращения турбины выходит за допускаемые производителем значения. Мы видим концентрические замкнутые линии, расходящиеся из центральной области карты. Возле каждой такой линии подписано значение эффективности компрессора внутри области очерченной этой линией. Самая маленькая область в центральной части соответствует максимально возможной эффективности компрессора. По мере удаления от центра мы будем попадать в области все меньшей и меньшей эффективности пока не упремся либо в предел по Surge слева, либо в предел по производительности справа. Линии, обозначенные на карте как скорость вращения турбины, показывают с какой скоростью будет вращаться вал турбины в этой области. Значения выражаются в оборотах вала за минуту времени. С ростом скорости вращения турбины у нас увеличивается давление и/или расход воздуха через компрессор. Как видно, эти линии начинают сходиться в области границы зоны эффективности и, как уже было сказано выше, за пределами этой области скорость вращения турбины быстро увеличивается за пределы допустимого. На этом мы заканчиваем рассмотрение компрессорной карты и теперь, понимая что на ней изображено, в следующей главе мы перейдем к изучению процесса подбора турбины под конкретный мотор. По материалам Garrett TurboTech.

Перевод и адаптация Oleg Coupe (TurboGarage)

Как установить турбину? Как выбрать турбину - Техно теория

Турбирование двигателей внутреннего сгорания — самый эффективный способ увеличения их мощности. Каждая вновь приобретенная лошадиная сила, полученная после установки турбочарджера, получается дешевле, нежели при других путях апгрейда мотора.

автор: Алексей Романов

Всем про это известно…

На самом деле не высокая эффективность доработки моторов посредством турбин стала поводом обратиться к теоретическим основам этой процедуры. Тем более, в условиях сегодняшнего состояния экономики ожидаемая дешевизна приобретенных «лошадей», вычисляемая главным образом за счет их количества, нивелируется размером общих вложений.

Просто на протяжении довольно долгого времени (последние пару лет уж точно) все многочисленные публикации о доработках автомобилей на тему турбирования преподносят в несколько однобокой манере. Подробнейшие повествования о поэтапной подготовке двигателя с разбором технологических операций и оценки конструктивных особенностей каждой детали, выбираемой для кривошипно-шатунного механизма, цилиндропоршневой группы, ГРМ и т. д., подойдя к теме турбирования, как правило, странным образом обрываются примерно так: «Параметры кастом турбосистемы остались засекреченным know-how ее изготовителя».

А когда речь идет о конструкциях турбосистем с различной принципиальной схемой, чаще всего особенности их работы подлежат рассмотрению только относительно друг друга. О характеристиках же, влияющих на величину отдачи силового агрегата, нет ни слова. То, как все работает расписано досконально, а о том, сколько вырабатывает та или иная замечательная конфигурация — ничего.

Отчеты о проделанной тюнерами работе (рассказы о доработанных машинах — подавно) тоже не отличаются информативностью. В них практически не встречается хотя бы перечисление руководящих принципов выбора турбочарджеров. Обычно все ограничивается лишь наименованием установленной модели без обоснования предпочтений. Вместо этого можно прочесть фразы типа: «про турбирование всем все известно». Поддавшись силе подобных выражений, можно легко впасть в заблуждение о степени своей информированности, подобно Кисе Воробьянинову в одной из экранизаций «12 стульев», уверовавшему в знание им немецкого языка. Заблуждения и неточности вообще имеют свойство укрепляться в сознании человека, порой приобретая свойства аксиом.

Вот, к примеру, если спросить любого, более-менее сведущего в технике человека, о том, чему равна мощность двигателя, то с огромной долей вероятности в ответ получим: «Мощность равна произведению крутящего момента и оборотов коленвала». Услышав и запомнив нехитрую формулу, тюнер-новичок проведет немало времени, подставляя известные параметры в это уравнение, удивляясь величине получаемых искомых. И только потом к нему придет осознание необходимости присутствия в уравнении фундамента инжиниринга — коэффициента. То есть, изначально сообщение о равенстве содержало неточность. Хоть это и не назвать большой ошибкой, но все-таки лучше сюда подходит понятие эквивалентности.

Как установить турбину? Как выбрать турбину — Техно теория

Естественно, долгое отсутствие элементов турбо теории в периодических автомобильных изданиях ни в коем случае не отразилось на среднем уровне знаний в тюнинговой среде. Те, кто дорабатывал таким образом двигатели, подтвердят, что для осуществления своих планов совсем не обязательно уметь щелкать как орехи дифференциальные уравнения, логарифмы и прочие мудреные формы вычислений из программы высшей или самой обычной математики. Необходимые для решения подобной задачи навыки, скорее, ближе к арифметике, а довольно большая их часть и вовсе сродни простейшей геометрии (даже не начертательной). Провести две пересекающиеся под углом 90 градусов прямые на графике — задача не из разряда затруднительных. Огромное количество, опять же, коэффициентов, полученных благодаря системным лабораторным исследованиям для замещения ими сложных функциональных зависимостей параметров газодинамических процессов, еще более упрощают решения задачи подбора турбочарджера. Но, все же, держа в голове постоянно прибавляющееся количество вновь пристрастившихся к тюнингу, повторить теоретические аспекты не будет лишним.

Турбина — формула мощности

Совсем не просто так в предыдущей главе была упомянута формула мощности мотора. Если вести разговор именно только о турбочарджере, принимая все работы по необходимому укреплению и совершенствованию деталей двигателя как уже свершившийся факт, то именно мощность служит точкой отсчета, с которой начинается выбор размеров турбосистемы. Конечно, желание снять побольше сил обязательно будет ограничено способностью двигателя выдерживать повышенные нагрузки. Поэтому мечтая о «лошадях», несмотря на то, что для получения их умопомрачительного количества обязательно найдется подходящий турбокомпрессор, нужно помнить и таком понятии как ресурс.

Из связи крутящего момента с давлением на поршень и геометрией цилиндра не трудно увидеть, что наибольшие резервы роста мощности без кардинального пересмотра конструкции двигателя лежат в повышении давления при рабочем ходе. Давление это, конечно, зависит от эффективности процесса сгорания топлива, но в большей степени на него оказывает влияние масса топливовоздушной смеси, заключенная в объеме цилиндра. Поскольку состав смеси колеблется в крайне ограниченных пределах, ее количество полностью описывается расходом воздуха через двигатель.

По расходу воздуха в качестве основного критерия и степени повышения давления выбирают одну из двух ставных частей турбочарджера — компрессорную. Определение же пара метров турбинной части исходит из того, что величина давления в компрессоре зависит от результирующей линейной скорости бесконечно малого объема воздуха на наружной кромке лопатки компрессорного колеса. Иначе говоря, она зависит от диаметра последнего и скорости вращения, которая задается турбиной. Если от компрессора в большей степени зависят пиковые значения мощности турбированного мотора, то от турбины – характеристики выхода на различные режимы работы. Поэтому задача подбора турбо системы двуедина. Приступая к рассмотрению претендентов на место под капотом, сначала нужно определиться не только с уровнем желаемой мощности, но и с тем, как машина будет эксплуатироваться. Причем второе, пожалуй, даже важнее, что совпадает с общим правилом для всех систем как при тюнинге, так и при проектировании автомобиля в целом.

Как установить турбину? Как выбрать турбину — Техно теория

Автомобиль в большинстве случаев является многофункциональным средством передвижения. Но даже строя машину под определенные цели (будь то повседневные городские или пригородные поездки, соревнования на лучшее время круга, преодолеваемого с постоянной крейсерской скоростью, дрэг-битва, дрифт, или же перевозка грузов) при подборе турбо-чарджера придется искать компромисс в величинах турбо-лага, температуры, скорости выхода на рабочий режим, крутящего момента и мощности на низах.

Правильный выбор обеспечит низкое сопротивление системы, малозаметную турбо-яму, низкую температуру топливного заряда и низкое давление в выпускном коллекторе. Но каков бы ни был выбор, все равно придется пожертвовать либо моментом на низах, либо максимумом мощности вверху. Впрочем, для устранения этих недостатков существуют проверенные решения, досконально расписанные в статьях о конструктивных схемах турбо систем. Сегодня разговор не о них.

Обратный инжиниринг

В автомобильной науке множество условностей и допущений. Можно, конечно, относиться к ним пренебрежительно, называя обратным инжинирингом (это когда решение подгоняется под результат при помощи коэффициентов), но на протяжении многих десятилетий такая методика давала достойный результат. Современные методы вычисления, подкрепленные возможностями компьютерной техники, позволяют досконально проработать все нюансы конструкции. Однако при тюнинге столь громоздкие вычисления не оправданны, поскольку технологические возможности самостоятельных изысканий ограничены. Ну, в самом деле, как в непромышленных условиях, например, модифицировать инконелевое колесо турбины, даже если благодаря собственным расчетам удалось найти резервы для повышения отдачи мотора. При тюнинге обычно расчеты выполняют для определения параметров выбора из уже существующих типоразмеров, и для этого достаточно упрощенной схемы расчетов, которой пользовались инженеры до появления электронных средств вычислений.

Какой нужен размер турбины? Выбор турбины.

Раз выбор режимов является приоритетным, то вопреки правилу, устоявшемуся у составителей учебных программ, описание поиска оптимальных размеров турбо компрессора стоит начать с его турбинной части, но перед этим рассмотрим некоторые общие положения.

Турбина призвана раскручивать компрессорную часть до тех скоростей, которые смогут обеспечить в ней желательные величины потока воздуха и давления наддува. Маленькая турбина будет раскручиваться быстрее, чем большая, при той же самой энергии выхлопных газов. Потом, правда, такая турбина создаст большее ограничение потоку выхлопа, а оно вызовет противодавление в выпускном коллекторе – неприятный побочный эффект. Это не означает поиск компромисса. Размер турбинной части, даже когда основной целью выбора является обеспечение максимально возможной скорости раскрутки, должен сохранять уровень противодавления на минимуме.

Давление в выпускном коллекторе служит хорошим показателем успешности того насколько хорошо турбинная часть подобрана для конкретного двигателя. Чем меньше показания манометра, установленного в выпускном коллекторе, тем больше мощности мотора. Давление в выпускном коллекторе не должно превышать давление наддува приблизительно в 2,5 раза.

Резвый отклик турбины на педаль газа, ранний подхват, и, как следствие, ощутимые показатели избытка на впуске, которые расхваливает какой-нибудь производитель турбин малого размера, порадуют только владельцев тихоходных пикапов для перевозки печатной продукции от склада до торгового ларька. Для легкового автомобиля даже при обычном городском режиме с рваным ритмом передвижения такие турбо-малютки становятся проблемой, отбирая уже на оборотах чуть выше средних до 20% мощности.

Процесс выбора турбинной части во многом заключается в оценке двух параметров: размера турбины и отношения A/R. Размер турбины вообще можно оценивать по диаметру ее выходного отверстия (рис.1). Хотя такой подход, конечно же, грубоват, но все же дает представление о потенциале потока выхлопных газов, пропускаемых турбиной. Выбор турбины, в отличие от компрессора, в большей степени основывается не на прямых вычислениях, а на результатах измерений (как самостоятельных, так и накопленных предшественниками и инженерами в лабораториях).

По графику зависимости расхода воздуха в компрессоре от размера выходного диаметра турбинной части (рис.2), построенного по усредненным статистическим результатам тестирования и испытаний существующих турбодвигателей, можно начать рассмотрение группы чарджеров, подпадающих под интересующий диапазон расхода. Более простая формула для вычисления расхода (в сравнении с приведенной выше) будет приведена в главе, посвященной подбору компрессоров. у производителей турбо-китов имеются собственные графики подобных зависимостей, лучше характеризующие их продукцию. Но в любом случае оценка по этому показателю очень приблизительна.

Отношение A/R

В то время как габарит турбины приблизительно отражает ее способность переваривать поток выхлопных газов, оценка отношения A/R — инструмент более точного подбора ее основных конструктивных размеров. Параметр А, называемый площадью разгрузки, представляет собой площадь сечения конусного канала, организованного по периметру улитки. Параметр R в отношении A/ R — расстояние от оси турбинного колеса до линии центра сечений конусного канала улиточной части. Отношение A/ R постоянно по всей окружности турбины (рис. 3) :

Al/ R1=A2/ R2=A3/ R3=A4/ R4=A5/ R5.

Соотношение A/R применимо и для компрессорной, и для турбинной частей чарджера. Компрессорный A/ R незначительно влияет на производительность турбо системы, хотя увеличение его часто применяют для некоторого повышения давления при малом расходе у чарджеров небольших размеров.

На компрессорах с большим расходом, наоборот, иногда его уменьшают, раздвигая тем самым границы пика наддува. Гораздо важнее для характеристик системы турбинный A/R. Размер А- существенный фактор, поскольку он определяет скорость, с которой выхлопные газы выходят из конусной части улитки на лопатки колеса. Это имеет непосредственно е отношение к скорости вращения турбины. Чем площадь разгрузки меньше, тем она выше. Необходимо помнить, что площадь разгрузки также влияет и на силу противодавления, стремящуюся вернуть вы хлоп обратно в камеру сгорания.

Параметр R тоже существенно сказывается на скорости вращения турбины. Принципиальная зависимость такая же: чем меньше R, тем скорость выше. Но что более весомо, увеличение R дает на валу крыльчатки больший крутящий момент. Это объясняется довольно просто: чем больше рычаг приложения сил (в нашем случае от выхлопных газов), тем больший момент получаем на оси. Выбирать лучше турбину с большим диаметром турбинного колеса, если позволяют условия.

Если ошибочно выбрана турбина со слишком большим значением A/R, то рост давления наддува будет происходить слишком вяло. A/R должно быть настолько большим, чтобы не было препятствий для скорости вращения, достаточной для получения, в конечном счете, необходимого давления в компрессоре.

Если A/ R слишком мал, то реакция турбины на переменные условия режимов движения автомобиля будет столь быстрой, что управление машиной станет казаться трудным и нервным. Это также отразится на снижении мощности в верхней трети диапазона оборотов двигателя.

На рис.4 изображена примерная зависимость давления наддува компрессора от давления на в ходе в турбинную часть при разных значениях A/R. Более точные цифры, служащие отправной точкой выбора отношения A/R, можно получить только путем измерений давления в выпускном коллекторе и давления наддува на впуске непосредственно на двигателе.

Trim

Еще один пара метр, характерный для турбинной и компрессорной части, — соотношение входного и выходного диаметров крыльчаток, обозначаемое в спецификациях как Trim. В компрессоре входной диаметр меньше, а в турбине, наоборот, поток газов в ходит в контакт сначала с лопастями колеса большего диаметра. Тем не мене, Trim в обоих случаях считается как меньший диаметр, деленный на больший. Часто в документации результат деления умножают на 100. Характеризовать Trim как конусность не совсем корректно, поскольку у колес с разной шириной при одинаковом соотношении диаметров фактическая конусность будет разной. Поэтому лучше придерживаться именно понятия Trim.

Для компрессоров меньшее значение Trim означает более быструю раскрутку, но расход у них меньше, нежели у компрессоров с более высоким значением соотношения диаметров колес. Кроме этого, высокий Trim означает, что турбо подхват будет резче. Именно на резкость реакции в первую очередь влияет этот показатель и у турбинных колес.

Сколько нужно количество лопаток на колесе?

Существуют формулы и для определения количества лопаток на колесе, но результаты вычислений сегодня имеют лишь познавательный эффект, так как за десятилетия сложилась достаточно устойчивое суждение об их численности в зависимости от диаметров колес. Для колес компрессора, если наружный их диаметр не превышает 80 мм, количество лопастей не может быть больше 12-14 для соблюдения условия 3-5 миллиметрового расстояния между входными кромками лопаток у основания наименьшего диаметра. На большем диаметре, естественно, возможно размещение большего количества лопастей. Увеличение их числа приводит к повышению КПД за счет уменьшения зон срыва потока и протечек на периферии. Но с определенного момента начинают расти потери на трение, и КПД перестает повышаться.

В общем случае, с увеличением числа лопаток на колесе сужается диапазон эффективной работы компрессора. Для повышения эффективности с сохранением широты диапазона прибегают к переменному по диаметру количеству лопаток. На меньшем диаметре число лопаток иногда даже уменьшают для сдвига границы помпажа в область меньшей производительности. Уменьшение производится укорочением или подрезкой лопастей на расстоянии 5-10 мм от входных кромок. Лопатки могут быть укорочены как все, так и через одну.

Раньше конструкторы старались сохранять равенство диаметров колес турбины и компрессора, считая, что это лучший способ обеспечить равную результирующую линейную скорость газов на кромках крыльчаток с обеих сторон чарджера. Собственно, это еще и облегчало задачу расчета, так как при таком подходе предполагался и одинаковый расход газов через обе улитки. Но разница в температурах и, соответственно, в плотности выхлопных газов и воздуха все-таки разрушает подобное равенство. Из уравнения степени понижения давления в турбине (одного из тех, что используются для проектирования турбины с чистого листа) следует, что диаметры и число лопаток турбинных колес меньше примерно на 10-15%, что подтверждают стендовые показатели.


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости