С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Состав выхлопных газов автомобиля


Примерный состав выхлопных газов автомобилей

Выбросы двигателей внутреннего сгорания (ДВС) делятся на выбросы от карбюраторных и дизельных двигателей. Такое разделение связано с тем, что карбюраторные двигатели (КД) работают с однородными топливновоздушными смесями, в то время как дизельные двигатели (ДД) – с гетерогенными смесями.

Выбросы загрязнений от двигателей внутреннего сгорания карбюраторного типа включают углеводороды, оксиды углерода, оксиды азота и нерегулярные выбросы. Загрязнения возникают вследствие реакций и в процессе горения в объеме и на поверхностях. Прорыв газов через поршневые кольца и выхлоп из цилиндров являются менее интенсивным источником выбросов загрязнений.

В 1980 г. 4 % выпускаемых в мире легковых и грузовых автомобилей было оснащено дизелями, а к концу 80-хгодов этот показатель возрос до 25 %. Основные выбросы загрязнений дизельных двигателей те же самые, что и карбюраторных двигателей (углеводороды, оксид углерода, оксиды азота, нерегулярные выбросы), но к ним добавляются частицы углерода (сажевый аэрозоль).

Содержание вредных веществ в выбросах автомобилей колеблется в широких пределах и зависит от многих факторов, например, при скорости 70 км/ч в выхлопе автомобиля содержится 0,2…0,3% СО, при скорости более 100 км/ч иприработе двигателя на холостом ходу содержание этого опасного газа достигает 12 %.

Легковой автомобиль выбрасывает оксида углерода СО до 3 м3/ч, грузовой — до 6 м3/ч (3…6 кг/ч).

О составе выхлопных газов автомобилей с различными типами двигателей можно судить по данным, приведенным в табл. 8.1.

Таблица 8.1.

Компоненты

Содержание, % (об.)

карбюраторный

дизельный дви-

двигатель

гатель

N2

74—77

76—78

О2

0,3—8,0

2—18

h3О (пары)

3,0—5,5

0,5—4,0

СО2

5,0—12,0

1,0—10,0

СО

5,0—10,0

0,01—0,50

0—0,8

2.10-3—0,5

Углеводороды

0,2—3,0

1.10-3—0,5

Альдегиды

0—0,2

1.10- 3—9.10-3

Сажа

0—0,4г/м3

0,01—1,1г/м3

Бензапирен

(10—20).10-6,г/м3

до1 . 10-5 г/м3

Выбросы оксида углерода и углеводородов у карбюраторных двигателей существенно выше, чем у дизельных двигателей.

8.2. Снижение выбросов двигателей внутреннего сгорания

Повышение экологических показателей автомобиля возможно за счет проведения комплекса мероприятий по совершенствованию его конструкции и режима эксплуатации. К улучшению экологических показателей автомобиля приводят: повышение его экономичности; замена бензиновых ДВС на дизельные; перевод ДВС на использование альтернативных топлив (сжатый или сжиженный газ, этанол, метанол, водород и др.); применение нейтрализаторов отработавших газов ДВС; совершенствование режима работы ДВС и технического обслуживания автомобиля.

Известны и применяются ряд методов снижения токсичности выхлопных газов. Среди них работа автомобиля в условиях, когда двигатель выделяет наименьшее количество токсичных веществ (уменьшение торможения, равномерное движение с определенной скоростью и т. д.); применение специальных присадок к топливу, увеличивающих полноту его сгорания и уменьшающих выброс СО (спирты, другие соединения); пламенное дожигание некоторых вредных компонентов.

Вкарбюраторных двигателях соотношение между воздухом и топливом влияет на содержание углеводородов и оксида углерода в выхлопе. Так, например, выбросы увеличиваются при увеличении обогащения смеси. Содержание СО увеличивается из-занеполного сгорания, вызванного недостатком кислорода в смеси. Увеличение содержания углеводородов проистекает в первую очередьиз-заувеличения адсорбции топлива и усиления механизма неполного сгорания топлива. Бедные смеси создают более низкие концентрации СnНm и СО в выбросе в результате их более полного сгорания.

Вдизельных двигателях мощность изменяется при изменении количества впрыскиваемого топлива. В результате изменяется распределение струи топлива, количество топлива, ударяющегося о стенку, давление в цилиндре, температура, а также продолжительность впрыскивания.

Специалисты считают, что для заметного снижения вредных выбросов необходимо сократить потребление бензина с 8 литров (на 100 км пробега – до 2…3 л. Это требует совершенствование устройства двигателя и качества топлива; перехода на неэтилизированный бензин; применения каталитического дожига для уменьшения выброса СО; внедрения электрон-

ной системы управления процессов горения топлива; и другие меры, в частности применения глушителей шума в системе выхлопа.

Повышение топливной экономичности автомобиля достигается главным образом за счет совершенствования процесса сгорания в ДВС: послойное сжигание топлива; форкамерно-факельноесжигание; применение подогрева и испарения топлива во впускном тракте; использование электронного зажигания. Дополнительными резервами повышения экономичности автомобиля являются:

—снижение массы автомобиля за счет усовершенствования его конструкции и применения неметаллических и высокопрочных материалов;

—улучшение аэродинамических показателей кузова (последние модели легковых автомобилей обладают, как правило, на 30…40 % меньшим коэффициентом лобового сопротивления);

—снижения сопротивления воздушных фильтров и глушителей, отключения вспомогательных агрегатов, например вентилятора и т. п.;

—снижения массы перевозимого топлива (неполное заполнение баков) и массы инструментов.

Современные модели легковых автомобилей существенно отличаются по топливной экономичности от предшествующих моделей.

Перспективные марки легковых автомобилей будут обладать расходом бензина 3,5 л/100 км и менее. Повышение экономичности автобусов и грузовых автомобилей достигается прежде всего применением дизельных ДВС. Они обладают экологическими преимуществами по сравнению с бензиновыми ДВС, поскольку имеют меньший на 25…30 % удельный расход топлива; кроме того, состав отработавших газов у дизельного ДВС менее токсичен (см. табл. 8.1).

Экологическими преимуществами по сравнению с бензиновыми ДВС обладают двигатели, работающие на альтернативных топливах. Общее представление о снижении токсичности ДВС при переходе на альтернативное топливо можно получить из данных, приведенных в табл. 8.2.

Таблица 8.2 Токсичность выбросов ДВС на различных топливах

Топливо

Выбросы, %

CO

NOx

100

100

Природный газ

60

74

Метанол

50

55

Многие ученые видят частичное решение экологической проблемы в переводе автомобилей на газообразное топливо. Так, содержание окиси уг-

лерода в выхлопах газомобилей меньше на 25…40 %; окиси азота на 25…30 %; сажи на 40…50 %. При использовании в автомобильных двигателях сжиженного или сжатого газа выхлопные газы почти не содержат оксида углерода. Решением проблемы явилось бы широкое применение электромобиля. Выпускаемые электромобили имеют ограниченный радиус действия из-заограниченной емкости и большой массы батарей. Сейчас ведутся широкие исследования в этой области. Некоторые положительные результаты уже достигнуты. Снижение токсичности выбросов может быть достигнуто уменьшением содержания соединений свинца в бензине без ухудшения его энергетических качеств.

Перевод на газовое топливо не предусматривает значительных изменений в конструкции ДВС, однако сдерживается отсутствием станций заправки и необходимого количества автомобилей, переоборудованных для работы на газе. Кроме того, автомобиль, переоборудованный для работы на газовом топливе, теряет грузоподъемность из-заналичия баллонов и запас хода приблизительно в 2 раза (200 км против 400…500 км у бензинового автомобиля). Эти недостатки частично устранимы при переводе автомобиля на сжиженный природный газ.

Применение метанола и этанола требует изменений конструкции ДВС, так как спирты более химически активны к резинам, полимерам, медным сплавам. В конструкцию ДВС необходимо вводить дополнительный подогреватель для запуска двигателя в холодный период года (при t< -25°С); необходима перерегулировка карбюратора, так как изменяется стехиометрическое отношение расхода воздуха к расходу топлива. У бензиновых ДВС оно равно 14,7; у двигателей на метаноле — 6,45, а на этаноле — 9. За рубежом (Бразилия) применяют смеси бензина и этанола в пропорции 12:10, что позволяет использовать бензиновые ДВС с незначительными изменениями их конструкции, несколько повышая при этом экологические показатели двигателя.

Несмотря на то, что выбросы токсичных веществ (СnНm и СО) из картера и топливной системы двигателя по крайней мере на порядок ниже выбросов выхлопных газов, в настоящее время разрабатываются методы сжигания картерных газов ДВС. Известна замкнутая схема нейтрализации картерных газов с подачей их во впускной трубопровод двигателя с последующим дожиганием. Замкнутая система вентиляции картера с возвращением картерных газов до карбюратора уменьшает выделение в атмосферу углеводородов на 10…30 %, оксидов азота на 5…25 %, но при этом увеличивается выброс оксида углерода на 10…35 %. При возвращении картерных газов после карбюратора снижается выброс CnHm на 10…40 %, СО на 10…25 %, но возрастает выброс NOx на 10…40 %.

Для предотвращения выбросов паров бензина из топливной системы, основная часть которых поступает в атмосферу, когда двигатель не работает, на автомобилях устанавливают систему обезвреживания испарений топлива из карбюратора и топливного бака, состоящую из трех основных узлов (рис. 8.1): герметичного топливного бака 1 со специальной емкостью 2 для компенсации теплового расширения топлива; крышки 3 топливно-за-правочной горловины бака с двусторонним предохранительным клапаном для предотвращения чрезмерного давления или разрежения в баке; адсорбера 4 для поглощения паров топлива при выключенном двигателе с системой возврата паров во впускной тракт двигателя во время его работы. В качестве адсорбента используют активированный уголь.

Рис. 8.1. Схема улавливания паров топлива бензинового ДВС

Соблюдение регламента технического обслуживания и контроль состава отработанных газов (ОГ) ДВС позволяет значительно сократить токсичные выбросы в атмосферу. Известно, что при 160 тыс. км пробега и при отсутствии контроля выбросы СО возрастают в 3,3 раза, а СпНт — в 2,5 раза.

Повышение экологических показателей газотурбинной двигательной установки (ГТДУ) на самолетах достигается совершенствованием процесса сгорания топлива, применением альтернативного топлива (сжиженный газ, водород и др.), рациональной организацией движения в аэропортах.

Увеличение времени пребывания продуктов сгорания в камере сгорания ГТДУ сопровождается увеличением полноты сгорания (уменьшение содержания СО и CnHm в продуктах сгорания) и содержания в них оксидов азота. Поэтому, изменяя время пребывания газа в камере сгорания, можно достичь лишь минимальной токсичности продуктов сгорания, а не устранить ее полностью.

Более эффективным средством снижения токсичности ГТДУ является применение способов подачи топлива, обеспечивающих более равномерное смешение топлива и воздуха. К ним относятся устройства с предварительным испарением топлива, форсунки с аэрацией топлива и др. Испытания на модельных камерах свидетельствуют о том, что такими способами можно снизить содержание в продуктах сгорания СnНm более чем на порядок, СО — в несколько раз, обеспечить бездымный выхлоп и уменьшить содержание NOx.

Существенное снижение содержания NOx в продуктах сгорания ГТДУ достигается при стадийном процессе сгорания топлива в двухзонных камерах сгорания. В таких камерах основная часть топлива на режимах большой тяги сжигается в виде предварительно подготовленной бедной смеси. Меньшая часть топлива (~25 %) сжигается в виде богатой смеси, где и образуются в основном оксиды азота. Опыты показывают, что при таком сгорании можно снизить содержание NOx в 2 раза.

Решение экологических проблем, связанных с применением ракетной техники, основано на использовании экологически безопасного топлива и прежде всего кислорода и водорода.

8.3. Нейтрализация выхлопов двигателей внутреннего сгорания

Улучшение экологических характеристик автомобилей возможно за счет комплекса мероприятий по совершенствованию их конструкций и режимов эксплуатации. К ним относятся повышение экономичности работы двигателей, замена их бензиновых версий на дизельные, использование альтернативных топлив (сжатый или сжиженный газ, этанол, метанол, водород и др.), применение нейтрализаторов отработанных газов, оптимизация режима работы двигателей и технического обслуживания автомобилей.

Значительное снижение токсичности ДВС достигается при использовании нейтрализаторов отработавших газов (ОГ). Известны жидкостные, каталитические, термические и комбинированные нейтрализаторы. Наиболее эффективными из них являются каталитические конструкции. Оснащение ими автомобилей началось в 1975 г. в США и в 1986 г. - в Европе. С тех пор загрязнение атмосферы выхлопами резко снизилось - соответственно на 98,96 и 90% по углеводородам, СО и NOх.

Нейтрализатор — это дополнительное устройство, которое вводится в выпускную систему двигателя для снижения токсичности ОГ. Известны жидкостные, каталитические, термические и комбинированные нейтрализаторы.

Принцип действия жидкостных нейтрализаторов основан на растворении или химическом взаимодействии токсичных компонентов ОГ при пропускании их через жидкость определенного состава: вода, водный раствор сульфита натрия, водный раствор двууглекислой соды.

На рис. 8.2 представлена схема жидкостного нейтрализатора, применяемого с двухтактным дизельным двигателем. Отработавшие газы поступают в нейтрализатор по трубе 1 и через коллектор 2 попадают в бак 3, где вступают в реакцию с рабочей жидкостью. Очищенные газы проходят через фильтр 4, сепаратор 5 и выбрасываются в атмосферу. По мере испарения жидкость доливают в рабочий бак из дополнительного бака 6.

Рис. 8.2. Схема жидкостного нейтрализатора

Пропускание отработавших газов дизелей через воду приводит к уменьшению запаха, альдегиды поглощаются с эффективностью 0,5, а эффективность очистки от сажи достигает 0,60…0,80. При этом несколько уменьшается содержание бенз(а)пирена в отработанных газах дизелей. Температура газов после жидкостной очистки составляет 40…80 °С, примерно до этой же температуры нагревается и рабочая жидкость. При снижении температуры процесс очистки идет интенсивнее.

Жидкостные нейтрализаторы не требуют времени для выхода на рабочий режим после пуска холодного двигателя. Недостатки жидкостных нейтрализаторов: большая масса и габариты; необходимость частой смены рабочего раствора; неэффективность по отношению к СО; малая эффективность (0,3) по отношению к NOx; интенсивное испарение жидкости. Однако использование жидкостных нейтрализаторов в комбинированных системах очистки может быть рациональным, особенно для установок, отработавшие газы которых должны иметь низкую температуру при поступлении в атмосферу.

studfiles.net

Компоненты выхлопа двигателей внутреннего сгорания. Состав выхлопных газов

Основными источниками выбросов автомобиля являются двигатель внутреннего сгорания, испарение топлива через систему вентиляции топливного бака, а также ходовая часть: в результате трения шин о дорожное покрытие, износа тормозных колодок и коррозии металлических деталей независимо от выбросов двигателя образуются частицы мелкодисперсной пыли. При эрозии катализатора выделяются платина, палладий и родий, а при износе накладок сцепления также выделяются токсичные вещества, такие как свинец, медь и сурьма. Для этих вторичных выбросов автомобилей также должны быть установлены предельные значения.

Вредные вещества

Рис. Состав выхлопных газов

Состав отработавших (выхлопных) газов автомобиля включает множество веществ или групп веществ. Преобладающей частью компонентов ОГ являются неядовитые, содержащиеся в обычном воздухе газы. Как показано на рисунке, лишь небольшая часть ОГ является вредной для окружающей среды и здоровья людей. Несмотря на это, необходимо дальнейшее снижение концентрации токсичных компонентов ОГ. Хотя современные автомобили сегодня дают очень чистый выхлоп (у автомобилей Евро-5 он в некоторых аспектах даже чище всасываемого воздуха), огромное число эксплуатируемых автомобилей, которых только в Германии насчитывается около 56 млн единиц, выбрасывает значительное количество ядовитых и вредных для здоровья веществ. Исправить ситуацию призваны новые технологии и введение более жестких требований к экологичности ОГ.

Оксид углерода (СО)

Оксид углерода (угарный газ) СО — газ без цвета и запаха. Это яд для дыхательной системы, нарушающий функцию центральной нервной и сердечно-сосудистой систем. В человеческом организме он связывает красные кровяные тельца и вызывает кислородное голодание, которое за короткое время приводит к смерти от удушья. Уже при концентрации в воздухе 0,3% по объему угарный газ в очень короткое время убивает человека. Действие зависит от концентрации СО в воздухе, от длительности и глубины вдыхания. Лишь в среде с нулевой концентрацией СО он может быть выведен из организма через легкие.

Оксид углерода всегда возникает при недостатке кислорода и при неполном сгорании.

Углеводороды (СН)

Углеводороды выбрасываются в атмосферу в виде несгоревшего топлива. Они оказывают раздражающее действие на слизистые оболочки и органы дыхания человека. Дальнейшая оптимизация рабочего процесса двигателя возможна лишь путем совершенствования производственных технологий и углубления знаний о процессах сгорания.

Углеводородные соединения возникают в виде парафинов, олефинов, ароматов, альдегидов (особенно формальдегидов) и полициклических соединений. Экспериментально доказаны канцерогенные и мутагенные свойства более 20 полициклических ароматических углеводородов, которые в силу своего малого размера способны проникать до легочных пузырьков. Самыми опасными углеводородными соединениями считаются бензол (С6Н6), толуол (метилбензол) и ксилол (диметилбензол, общая формула С6Н4 (СН3)2). К примеру, бензол может вызвать у человека изменения картины крови и привести к возникновению рака крови (лейкемии).

Причиной выбросо углеводородов в атмосферу всегда является неполное сгорание топлива, недостаток кислорода, а при очень обедненной смеси — слишком медленное сгорание топлива.

Окислы азота (NOх)

При высокой температуре сгорания (более 1100°С) содержащийся в воздухе реакционно инертный азот активируется и вступает в реакции со свободным кислородом в камере сгорания, образуя окислы. Они очень вредны для окружающей среды: становятся причинами образования смога, гибели лесов, выпадения кислотных дождей; также окислы азота являются переходными веществами для образования озона. Они — яд для крови, вызывают рак. В процессе сгорания возникают различные окислы азота — NO, NO2, N2O, N2O5— имеющие общее обозначение NOx. При соединении их с водой возникают азотная (HNO3) и азотистая (HNO2) кислоты. Диоксид азота (NO2) — красно-коричневый ядовитый газ с едким запахом, раздражающий органы дыхания и образующий соединения с гемоглобином крови.

Это самый проблематичный из всех окислов азота и в перспективе для него будут действовать отдельные нормы по допустимой концентрации. Доля NO2 в общих выбросах оксидов азота в будущем должна будет составлять менее 20%. В директиве 1999/30/EG с 2010 года предельно допустимая концентрация N02 установлена на уровне 40 мкг/м Соблюдение этой предельной концентрации предъявляет особые требования к защите от вредных выбросов.

Самые благоприятные условия для образования окислов азота — высокая температура сгорания обедненной топливовоздушной смеси. Системы рециркуляции ОГ позволяют снизить долю окислов азота в выхлопе автомобилей.

Оксиды серы (SOx)

Оксиды серы образуются из содержащейся в топливе серы. В процессе сгорания сера реагирует с кислородом и водой, образуя оксиды серы, серную (h3SO4) и сернистую (h3SO3) кислоты. Оксид серы — основная составляющая кислотных дождей и причина гибели лесов. Это водорастворимый едкий газ, воздействие которого на организм человека проявляется в покраснении, опухании и усилении секреции влажных слизистых оболочек глаз и верхних дыхательных путей. Диоксид серы воздействует на слизистые носоглотки, бронхов и глаз. Наиболее часто местом «атаки» диоксида серы являются бронхи. Сильное раздражающее воздействие на дыхательные пути объясняется образованием сернистой кислоты во влажной среде. Вглубь дыхательных путей попадают взвешенный в мелкодисперсной пыли диоксид серы SO2 и аэрозоль серной кислоты. Наиболее чувствительно реагируют на растущую концентрацию диоксида серы в воздухе астматики и маленькие дети. Высокое содержание серы в топливе сокращает срок службы катализаторов бензиновых зельных двигателей.

Снижение выбросов диоксида серы реализуется путем ограничения содержания серы в топливе. Цель — топливо, не содержащее серы.

Сероводород (h3S)

Последствия воздействия этого газа на органическую жизнь пока не совсем ясны науке, однако известно, что у человека он способен вызвать тяжелые отравления. В тяжелых случаях возникает угроза удушья, потеря сознания и паралич центральной нервной системы. При хроническом отравлении отмечается раздражение слизистых оболочек глаз и дыхательных путей. Запах сероводорода ощущается уже при концентрации его в воздухе в количестве 0,025 мл/м3.

Сероводород в выхлопных газах возникает при определенных условиях, причем, несмотря даже на наличие катализатора, и зависит от содержания серы в топливе.

Аммиак (Nh4)

Вдыхание аммиака приводит к раздражению дыхательных путей, кашлю, одышке и удушью. Также аммиак вызывает воспаляющиеся покраснения на коже. Прямое отравление аммиаком случается редко, так как даже большие его количества быстро превращаются в мочевину. При прямом вдыхании большого количества аммиака функции легких зачастую нарушаются на долгие годы. Особенно опасен этот газ для глаз. При сильном воздействии аммиака на глаза могут наступить помутнение роговицы и слепота.

При определенных условиях аммиак может образоваться даже в катализаторе. В то же время аммиак оказывается полезен в качестве восстановителя для катализаторов SCR.

Сажа и частицы

Сажа — это чистый углерод и нежелательный продукт неполного сгорания углеводородов. Причиной образования сажи является недостаток кислорода при сгорании или преждевременное охлаждение сжигаемых газов. Частицы сажи часто связываются с несгоревшими остатками топлива и моторного масла, а также воды, продуктов износа деталей двигателя, сульфатов и пепла. Частицы сильно отличаются друг от друга по форме и размеру.

Таблица. Классификация частиц

В таблице показана классификация и размеры частиц. Наиболее часто при работе двигателя образуются частицы диаметром около 100 нанометров (0,0000001 м или 0,1 мкм); такие частицы способны естественным путем попадать в легкие человека. При агглютинации (склеивании) частичек сажи друг с другом и другими компонентами масса, количество и распределение частиц в воздухе могут значительно меняться. Основные компоненты частиц представлены на рисунке.

Рис. Основные компоненты частиц

Благодаря своей губчатой структуре частички сажи могут захватывать как органические, так и неорганические вещества, образующиеся при сгорании топлива в цилиндрах двигателя. В результате масса частичек сажи может возрасти в три раза. Это будут уже не отдельные частички углерода, а правильной формы агломераты, образующиеся вследствие молекулярного притяжения. Размер таких агломератов может достигать 1 мкм. Выбросы сажи и других частиц особенно активно происходят при сгорании дизельного топлива. Эти выбросы считаются канцерогенными. Опасные наночастицы представляют количественно большую долю частиц, но по массе составляют лишь небольшой процент. По этой причине предлагается ограничивать содержание частиц в ОГ не по массе, а по количеству и распределению. В перспективе предусмотрено дифференцирование между размером частиц и их распределением.

Рис. Состав частиц

Выбросы частиц при работе бензиновых двигателей на два-три порядка ниже, чем при работе дизельных двигателей. Тем не менее, данные частицы обнаруживаются даже в выхлопе бензиновых двигателей с непосредственным впрыском топлива. Поэтому есть предложения по ограничению предельного содержания частиц в отработавших газах автомобилей. Сублимация — непосредственный переход вещества из твердого состояния в газообразное, и наоборот. Сублиматом называют твердый осадок газа при его охлаждении.

Мелкая пыль

При работе двигателей внутреннего сгорания образуются также особо мелкие частицы — пыль. Она состоит главным образом из частиц полициклических углеводородов, тяжелых металлов и соединений серы. Часть фракций пыли способна проникать в легкие, другие фракции в легкие не проникают. Фракции размером более 7 мкм менее опасны, так как отфильтровываются собственной системой фильтрации человеческого организма.

Различный процент более мелких фракций (менее 7 мкм) проникают в бронхи и легочные пузырьки (альвеолы), вызывая локальное раздражение. В области легочных пузырьков растворимые компоненты попадают в кровь. Собственная система фильтрации организма справляется не со всеми фракциями мелкой пыли. Атмосферные пылевые загрязнения называют также аэрозолями. Они могут быть в твердом или жидком состоянии и в зависимости- от размеров могут иметь различный период существования. При движении мельчайшие частички могут соединяться в более крупные с относительно стабильным периодом существования в атмосфере. Такими свойствами в основном обладают частицы диаметром от 0,1 мкм до 1 мкм.

При оценке образования мелкой пыли в результате работы автомобильного двигателя следует отличать эту пыль от пыли, образующейся естественным путем: пыльцы растений, дорожной пыли, песка и многих других веществ. Нельзя недооценивать и такие источники мелкой пыли в городах, как износ тормозных колодок и шин. Так что выхлопы дизельных двигателей — не единственный «источник» пыли в атмосфере.

Синий и белый дым

Синий дым возникает во время работы дизельного двигателя при температуре ниже 180°С из-за мельчайших конденсирующихся капелек масла. При температуре выше 180°С эти капельки испаряются. Несгоревшие углеводородные компоненты топлива участвуют в образовании синего дыма и при температурах от 70°С до 100°С. Большое количество синего дыма указывает на большой износ цилиндропоршневой группы, стержней и направляющих втулок клапанов. Слишком поздно выставленное начало подачи топлива также может быть причиной образования синего дыма.

Белый дым состоит из водяного пара, возникающего во время сгорания топлива и становящегося заметным при температуре ниже 70°С. Особенно характерно появление белого дыма у форкамерных и вихрекамерных дизелей после холодного запуска. Причиной белого дыма являются также несгоревшие углеводородные компоненты и конденсаты.

Углекислый газ (СO2)

Углекислый газ — это бесцветный, негорючий, кисловатый на вкус газ. Иногда его ошибочно называют угольной кислотой. Плотность СO2 примерно в 1,5 раза выше плотности воздуха. Углекислый газ является составной частью выдыхаемого человеком воздуха (3-4%) При вдыхании воздуха, содержащего 4-6% СO2, у человека возникают головные боли, шум в ушах и учащение сердцебиения, а при более высоких концентрациях СO2 (8-10%) наступают приступы удушья, потеря сознания и остановка дыхания. При концентрации более 12 % наступает смерть от кислородного голодания. К примеру, горящая свеча тухнет при концентрации СO2 8-10% по объему. Хоть углекислый газ и относится к удушающим веществам, но как компонент выхлопа двигателя не считается ядовитым. Проблема в том, что углекислый газ, как показано на рисунке, значительно способствует глобальному парниковому эффекту.

Рис. Доля газов в парниковом эффекте

Вместе с ним развитию парникового эффекта способствуют метан, закись азота (веселящий газ, оксид диазота), фторуглеводороды и гексафторид серы. Углекислый газ, водяной пар и микрогазы влияют на радиационный баланс Земли. Газы пропускают видимый свет, но поглощают тепло, отражаемое от земной поверхности. Без этой теплозадерживающей способности средняя температура на поверхности Земли была бы около -15°С.

Это называется природным парниковым эффектом. При увеличении концентрации микрогазов в атмосфере растет доля поглощаемого теплового излучения и возникает дополнительный парниковый эффект. По оценкам экспертов, к 2050 году средняя температура на Земле вырастет на +4°С. Это может привести к повышению уровня моря более чем на 30 см, вследствие чего начнут таять горные ледники и полярные ледяные «шапки», изменится направление морских течений (в том числе Гольфстрима), изменятся воздушные потоки, а моря затопят огромные пространства суши. Вот к чему может привести парниковые газы, образующиеся при деятельности людей.

Суммарные антропогенные выбросы СO2 составляют 27,5 млрд т в год. При этом Германия относится к крупнейшим источникам СO2 в мире. Энергетически обусловленные выбросы СO2 составляют в среднем около миллиарда тонн в год. Это около 5% всего производимого в мире СO2. Средняя семья из 3 человек в Германии производит в год 32,1 т СO2. Выбросы СO2 можно уменьшить только путем снижения расхода энергии и топлива. Пока энергия добывается путем сжигания ископаемых носителей проблема образования чрезмерного количества углекислого газа будет сохраняться. Поэтому срочно необходим поиск альтернативных источников энергии. Автопромышленность интенсивно работает над решением этой проблемы. Однако бороться с парниковым эффектом можно только в глобальном масштабе. Даже если в пределах ЕС будет достигнут большой прогресс в снижении выбросов углекислого газа, в других странах в ближайшие годы может, напротив, произойти значительный рост количества выбросов. США с большим отрывом лидируют в производстве парниковых газов, как в абсолютном выражении, так и в пересчете на душу населения. Имея долю в населении Земли всего 4,6%, они производят 24% мировых выбросов углекислого газа. Это примерно вдвое больше, чем в Китае, доля которого в населении Земли составляет 20,6%. 130 миллионов автомобилей в США (это меньше 20% от общего числа автомобилей на планете) производят столько же углекислого газа, сколько вся промышленность Японии — четвертой страны в мире по выбросам СО2.

Без дополнительных мер по защите климата глобальные выбросы СО2 вырастут к 2020 году на 39% (относительно 2004 г.) и составят 32,4 млрд т в год. Выбросы углекислого газа в США в ближайшие 15 лет увеличатся на 13% и превысят 6 млрд т. В Китае следует ожидать увеличения выбросов СO2 на 58%, до 5,99 млрд т, а в Индии — на 107%, до 2,29 млрд т. В странах ЕС, напротив, прирост составит лишь около одного процента.

ustroistvo-avtomobilya.ru

Выхлопные газы автомобилей

Выхлопные газы (или отработавшие газы) – основной источник токсичных веществ двигателя внутреннего сгорания – это неоднородная смесь различных газообразных веществ с разнообразными химическими и физическими свойствами, состоящая из продуктов полного и неполного сгорания топлива, избыточного воздуха, аэрозолей и различных микропримесей (как газообразных, так и в виде жидких и твердых частиц), поступающих из цилиндров двигателей в его выпускную систему. В своем составе они содержат около 300 веществ, большинство из которых токсичны. Основными нормируемыми токсичными компонентами выхлопных газов двигателей являются оксиды углерода, азота и углеводороды. Кроме того, с выхлопными газами в атмосферу поступают предельные и непредельные углеводороды, альдегиды, канцерогенные вещества, сажа и другие компоненты. Примерный состав выхлопных газов представлен в таблице 1.

При работе двигателя на этилированном бензине в составе выхлопных газов присутствует свинец, а у двигателей, работающих на дизельном топливе - сажа.

Состав выхлопных газов Компоненты выхлопного газа Содержание по объему, % Примечание Двигатели бензиновые дизели
Азот 74,0 - 77,0 76,0 - 78,0 нетоксичен
Кислород 0,3 - 8,0 2,0 - 18,0 нетоксичен
Пары воды 3,0 - 5,5 0,5 - 4,0 нетоксичны
Диоксид углерода 5,0 - 12,0 1,0 - 10,0 нетоксичен
Оксид углерода 0,1 - 10,0 0,01 - 5,0 токсичен
Углеводороды неканцерогенные 0,2 - 3,0 0,009 - 0,5 токсичны
Альдегиды 0 - 0,2 0,001 - 0,009 токсичны
Оксид серы 0 - 0,002 0 - 0,03 токсичен
Сажа, г/м3 0 - 0,04 0,01 - 1,1 токсична
Бензопирен, мг/м3 0,01 - 0,02 до 0,01 канцероген

Оксид углерода (CO – угарный газ)

Прозрачный, не имеющий запаха ядовитый газ, немного легче воздуха, плохо растворим в воде. Оксид углерода – продукт неполного сгорания топлива, на воздухе горит синим пламенем с образованием диоксида углерода (углекислого газа).

В камере сгорания двигателя CO образуется при неудовлетворительном распыливании топлива, в результате холоднопламенных реакций, при сгорании топлива с недостатком кислорода, а также вследствие диссоциации диоксида углерода при высоких температурах. При последующем сгорании после воспламенения (после верхней мертвой точки, на такте расширения) возможно горение оксида углерода при наличии кислорода с образованием диоксида. При этом процесс выгорания CO продолжается и в выпускном трубопроводе.

Необходимо отметить, что при эксплуатации дизелей концентрация CO в выхлопных газах невелика (примерно 0,1 – 0,2%), поэтому, как правило, концентрацию CO определяют для бензиновых двигателей.

Оксиды азота (NO, NO2, N2O, N2O3, N2O5, в дальнейшем – NOx)

Оксиды азота являются одними из наиболее токсичных компонентов отработавших газов. При нормальных атмосферных условиях азот представляет собой весьма инертный газ. При высоких давлениях и особенно температурах азот активно вступает в реакцию с кислородом. В выхлопных газах двигателей более 90% всего количества NOx составляет оксид азота NO, который еще в системы выпуска, а затем и в атмосфере легко окисляется в диоксид (NO2).

Оксиды азота раздражающе воздействуют на слизистые оболочки глаз, носа, разрушают легкие человека, так как при движении по дыхательному тракту они взаимодействуют с влагой верхних дыхательных путей, образуя азотную и азотистую кислоты. Как правило, отравление организма человека NOx проявляется не сразу, а постепенно, причем каких либо нейтрализующих средств нет.

Закись азота (N2O – гемиоксид, веселящий газ) – газ с приятным запахом, хорошо растворим в воде. Обладает наркотическим действием.

NO2 (диоксид) – бледно-желтая жидкость, участвующая в образовании смога. Диоксид азота используется в качестве окислителя в ракетном топливе.

Считается, что для организма человека оксиды азота примерно в 10 раз опаснее CO, а при учете вторичных превращений – в 40 раз.

Оксиды азота представляют опасность для листьев растений. Установлено, что их непосредственное токсичное влияние на растения проявляется при концентрации NOx в воздухе в пределах 0,5 – 6,0 мг/м3. Азотная кислота вызывает сильную коррозию углеродистых сталей.

На величину выброса оксидов азота оказывает значительное влияние температура в камере сгорания. Так, при повышении температуры от 2500 до 2700 К скорость реакции увеличивается в 2,6 раза, а при уменьшении от 2500 до 2300 К – уменьшается в 8 раз, т.е. чем выше температура, тем выше концентрация NOx. Ранний впрыск топлива или высокие давления сжатия в камере сгорания также способствуют образованию NOx. Чем выше концентрация кислорода, тем выше концентрация оксидов азота.

Углеводороды (CnHm – этан, метан, этилен, бензол, пропан, ацетилен и др.)

Углеводороды – органические соединения, молекулы которых построены только из атомов углерода и водорода, являются токсичными веществами. В выхлопных газах содержится более 200 различных CH, которые делятся на алифатические (с открытой или закрытой цепью) и содержащие бензольное или ароматическое кольцо. Ароматические углеводороды содержат в молекуле один или несколько циклов из 6 атомов углерода, соединенных между собой простыми или двойными связями (бензол, нафталин, антрацен и др.). Имеют приятный запах.

Наличие CH в отработавших газах двигателей объясняется тем, что смесь в камере сгорания является неоднородной, поэтому у стенок, в переобогащенных зонах, происходит гашение пламени и обрыв цепных реакций (см. рисунок 1).

Рис. 1 – Схема образования CH в выхлопных газах

1 – поршень; 2 – гильза; 3 – пристеночные слои смеси

Не полностью сгоревшие CH, выбрасываемые с выхлопными газами и представляющие собой смесь нескольких сотен химических соединений, имеют неприятный запах. CH являются причиной многих хронических заболеваний.

Токсичны также и пары бензина, которые являются углеводородами. Допустимая среднесуточная концентрация паров бензина составляет 1,5 мг/м3. Содержание CH в выхлопных газах возрастает при дросселировании, при работе двигателя на режимах принудительного холостого хода (ПХХ, например, при торможении двигателем.). При работе двигателя на указанных режимах ухудшается процесс смесеобразования (перемешивания топливовоздушного заряда), уменьшается скорость сгорания, ухудшается воспламенение и, как результат, - возникают его частые пропуски.

Выделение CH вызывается неполным сгоранием вблизи холодных стенок, если до конца сгорания остаются места с сильным локальным недостатком воздуха, недостаточным распыливанием топлива, при неудовлетворительном завихрении воздушного заряда и низких температурах (например, режим холостого хода).

Углеводороды образуются в переобогащенных зонах, где ограничен доступ кислорода, а также вблизи сравнительно холодных стенок камеры сгорания. Они играют активную роль в образовании биологически активных веществ, вызывающих раздражение глаз, горла, носа и их заболевание, и наносящих ущерб растительному и животному миру.

Углеводородные соединения оказывают наркотическое действие на центральную нервную систему, могут являться причиной хронических заболеваний, а некоторые ароматические CH обладают отравляющими свойствами.

Углеводороды (олефины) и оксиды азота при определенных метеорологических условиях активно способствуют образованию смога.

Смог

Смог (Smog, от smoke – дым и fog - туман) – ядовитый туман, образуемый в нижнем слое атмосферы, загрязненном вредными веществами от промышленных предприятий, выхлопными газами от автотранспорта и теплопроизводящих установок при неблагоприятных погодных условиях.

Он представляет собой аэрозоль, состоящую из дыма, тумана, пыли, частичек сажи, капелек жидкости (во влажной атмосфере). Возникает в атмосфере промышленных городов при определенных метеорологических условиях.

Поступающие в атмосферу вредные газы вступают в реакцию между собой и образуют новые, в том числе и токсичные соединения. В атмосфере при этом происходят реакции фотосинтеза, окисления, восстановления, полимеризации, конденсации, катализа и т.д.

В результате сложных фотохимических процессов, стимулируемых ультрафиолетовой радиацией Солнца, из оксидов азота, углеводородов, альдегидов и других веществ образуются фотооксиданты (окислители).

Низкие концентрации NO2 могут создать большое количество атомарного кислорода, который в свою очередь образует озон и вновь реагирует с веществами, загрязняющими атмосферный воздух. Наличие в атмосфере формальдегида, высших альдегидов и других углеводородных соединений также способствует вместе с озоном образованию новых перекисных соединений.

Продукты диссоциации взаимодействуют с олефинами, образуя токсичные нитроперекисные соединения. При их концентрации более 0,2 мг/м3 наступает конденсация водяных паров в виде мельчайших капелек тумана с токсичными свойствами. Их количество зависит от сезона года, времени суток и других факторов. В жаркую сухую погоду смог наблюдается в виде желтой пелены (цвет придает присутствующий в воздухе диоксид азота NO2 – капельки желтой жидкости).

Смог вызывает раздражение слизистых оболочек, особенно глаз, может вызвать головную боль, отеки, кровоизлияния, осложнения заболеваний дыхательных путей. Ухудшает видимость на дорогах, увеличивая тем самым количество дорожно-транспортных происшествий.

Опасность смога для жизни человека велика. Так, например, лондонский смог 1952 г. называют катастрофой, так как за 4 дня от смога погибло около 4 тыс. человек. Наличие в атмосфере хлористых, азотных, сернистых соединений и капелек воды способствует образованию сильных токсичных соединений и паров кислот, что губительно сказывается на растениях, а также сооружениях, особенно на исторических памятниках, сложенных из известняка.

Природа смогов различна. Например, в Нью-Йорке образованию смога способствуют реакции фтористых и хлористых соединений с капельками воды; в Лондоне – присутствие паров серной и сернистой кислот; в Лос-Анджелесе (калифорнийский или фотохимический смог) – наличие в атмосфере оксидов азота, углеводородов; в Японии – присутствие в атмосфере частиц сажи и пыли.

carspec.info

Что содержится в выхлопных газах автомобиля?

Небольшой ликбез для любителей подышать из выхлопной трубы.

Отработавшие газы ДВС содержат около 200 компонентов. Период их существования длится от нескольких минут до 4 -5 лет. По химическому составу и свойствам, а также характеру воздействия на организм человека их объединяют в группы.

Первая группа. В нее входят нетоксичные вещества (естественные компоненты атмосферного воздуха

Вторая группа. К этой группе относят только одно вещество — оксид углерода, или угарный газ (СО). Продукт неполного сгорания нефтяных видов топлива не имеет цвета и запаха, легче воздуха. В кислороде и на воздухе оксид углерода горит голубоватым пламенем, выделяя много теплоты и превращаясь в углекислый газ.

Оксид углерода обладает выраженным отравляющим действием. Оно обусловлено его способностью вступать в реакцию с гемоглобином крови, приводя к образованию карбоксигемоглобина, который не связывает кислород. Вследствие этого нарушается газообмен в организме, появляется кислородное голодание и возникает нарушение функционирования всех систем организма.

Отравлению угарным газом часто подвержены водители автотранспортных средств при ночевках в кабине с работающим двигателем или при прогреве двигателя в закрытом гараже. Характер отравления оксидом углерода зависит от его концентрации в воздухе, длительности воздействия и индивидуальной восприимчивости человека. Легкая степень отравления вызывает пульсацию в голове, потемнение в глазах, повышенное сердцебиение. При тяжелом отравлении сознание затуманивается, возрастает сонливость. При очень больших дозах угарного газа (свыше 1 %) наступают потеря сознания и смерть.

Третья группа. В ее составе оксиды азота, главным образом NO -оксид азота и NO2 — диоксид азота. Это газы, образующиеся в камере сгорания ДВС при температуре 2800 °С и давлении около 10 кгс/см2. Оксид азота — бесцветный газ, не взаимодействует с водой и мало растворим в ней, не вступает в реакции с растворами кислот и щелочей.

Легко окисляется кислородом воздуха и образует диоксид азота. При обычных атмосферных условиях NO полностью превращается в NO2 -газ бурового цвета с характерным запахом. Он тяжелее воздуха, поэтому собирается в углублениях, канавах и представляет большую опасность при техническом обслуживании транспортных средств.

Для человеческого организма оксиды азота еще более вредны, чем угарный газ. Общий характер воздействия меняется в зависимости от содержания различных оксидов азота. При контакте диоксида азота с влажной поверхностью (слизистые оболочки глаз, носа, бронхов) образуются азотная и азотистая кислоты, раздражающие слизистые оболочки и поражающие альвеолярную ткань легких. При высоких концентрациях оксидов азота (0,004 — 0,008 %) возникают астматические проявления и отек легких.

Вдыхая воздух, содержащий оксиды азота в высоких концентрациях, человек не имеет неприятных ощущений и не предполагает отрицательных последствий. При длительном воздействии оксидов азота в концентрациях, превышающих норму, люди заболевают хроническим бронхитом, воспалением слизистой желудочно-кишечного тракта, страдают сердечной слабостью, а также нервными расстройствами.

Вторичная реакция на воздействие оксидов азота проявляется в образовании в человеческом организме нитритов и всасывании их в кровь. Это вызывает превращение гемоглобина в метагемоглобин, что приводит к нарушению сердечной деятельности.

Оксиды азота оказывают отрицательное воздействие и на растительность, образуя на листовых пластинах растворы азотной и азотистой кислот. Этим же свойством обусловлено влияние оксидов азота на строительные материалы и металлические конструкции. Кроме того, они участвуют в фотохимической реакции образования смога.

Четвертая группа. В эту наиболее многочисленную по составу группу входят различные углеводороды, то есть соединения типа СxНy. В отработавших газах содержатся углеводороды различных гомологических рядов: парафиновые (алканы), нафтеновые (цикланы) и ароматические (бензольные), всего около 160 компонентов. Они образуются в результате неполного сгорания топлива в двигателе.

Несгоревшие углеводороды являются одной из причин появления белого или голубого дыма. Это происходит при запаздывании воспламенения рабочей смеси в двигателе или при пониженных температурах в камере сгорания.

Углеводороды токсичны и оказывают неблагоприятное воздействие на сердечно-сосудистую систему человека. Углеводородные соединения отработавших газов, наряду с токсическими свойствами, обладают канцерогенным действием. Канцерогены — это вещества, способствующие возникновению и развитию злокачественных новообразований.

Особой канцерогенной активностью отличается ароматический углеводород бенз-а-пирен С20h22, содержащийся в отработавших газах бензиновых двигателей и дизелей. Он хорошо растворяется в маслах, жирах, сыворотке человеческой крови. Накапливаясь в организме человека до опасных концентраций, бенз-а-пирен стимулирует образование злокачественных опухолей.

Углеводороды под действием ультрафиолетового излучения Солнца вступают в реакцию с оксидами азота, в результате образуются новые токсичные продукты — фотооксиданты, являющиеся основой «смога».

Фотооксиданты биологически активны, оказывают вредное воздействие на живые организмы, ведут к росту легочных и бронхиальных заболеваний людей, разрушают резиновые изделия, ускоряют коррозию металлов, ухудшают условия видимости.

Пятая группа. Ее составляют альдегиды — органические соединения, содержащие альдегидную группу -СHO , связанную с углеводородным радикалом (СН3, С6Н5 или др.).

В отработавших газах присутствуют в основном формальдегид, акролеин и уксусный альдегид. Наибольшее количество альдегидов образуется на режимах холостого хода и малых нагрузок, когда температуры сгорания в двигателе невысокие.

Формальдегид НСНО — бесцветный газ с неприятным запахом, тяжелее воздуха, легко растворимый в воде. Онраздражает слизистые оболочки человека, дыхательные пути, поражает центральную нервную систему.Обуславливает запах отработавших газов, особенно у дизелей.

Акролеин СН2=СН-СН=O, или альдегид акриловой кислоты, — бесцветный ядовитый газ с запахом подгоревших жиров. Оказывает воздействие на слизистые оболочки.

Уксусный альдегид СН3СНО — газ с резким запахом и токсичным действием на человеческий организм.

Шестая группа. В нее выделяют сажу и другие дисперсные частицы (продукты износа двигателей, аэрозоли, масла, нагар и др.). Сажа — частицы твердого углерода черного цвета, образующиеся при неполном сгорании и термическом разложении углеводородов топлива. Она не представляет непосредственной опасности для здоровья человека, но может раздражать дыхательные пути. Создавая дымный шлейф за транспортным средством, сажа ухудшает видимость на дорогах. Наибольший вред сажи заключается в адсорбировании на ее поверхности бенз-а-пирена, который в этом случае оказывает более сильное негативное воздействие на организм человека, чем в чистом виде.

Седьмая группа. Представляет собой сернистые соединения — такие неорганические газы, как сернистый ангидрид, сероводород, которые появляются в составе отработавших газов двигателей, если используется топливо с повышенным содержанием серы. Значительно больше серы присутствует в дизельных топливах по сравнению с другими видами топлив, используемых на транспорте.

Для отечественных месторождений нефти (особенно в восточных районах) характерен высокий процент присутствия серы и сернистых соединений. Поэтому и получаемое из нее дизельное топливо по устаревшим технологиям отличается более тяжелым фракционным составом и вместе с тем хуже очищено от сернистых и парафиновых соединений. Согласно европейским стандартам, введенным в действие в 1996 году, содержание серы в дизельном топливе не должно превышать 0,005 г/л, а по российскому стандарту — 1,7 г/л. Наличие серы усиливает токсичность отработавших газов дизелей и является причиной появления в них вредных сернистых соединений.

Сернистые соединения обладают резким запахом, тяжелее воздуха, растворяются в воде. Оказывают раздражающее действие на слизистые оболочки горла, носа, глаз человека, могут привести к нарушению углеводного и белкового обмена и угнетению окислительных процессов, при высокой концентрации (свыше 0,01 %) — к отравлению организма. Сернистый ангидрид губительно воздействует и на растительный мир.

Восьмая группа. Компоненты этой группы — свинец и его соединения — встречаются в отработавших газах карбюраторных автомобилей только при использовании этилированного бензина, имеющего в своем составе присадку, повышающую октановое число. Оно определяет способность двигателя работать без детонации. Чем выше октановое число, тем более стоек бензин против детонации. Детонационное сгорание рабочей смеси протекает со сверхзвуковой скоростью, что в 100 раз быстрее нормального. Работа двигателя с детонацией опасна тем, что двигатель перегревается, мощность его падает, а срок службы резко сокращается. Увеличение октанового числа бензина способствует снижению возможности наступления детонации.

В качестве присадки, повышающей октановое число, используют антидетонатор — этиловую жидкость Р-9. Бензин с добавлением этиловой жидкости становится этилированным. В состав этиловой жидкости входят собственно антидетонатор — тетраэтилсвинец РЬ(С2Н5)4, выноси-тель — бромистый этил (ВгС2Н5) и α-монохлорнафталин (C10H7Cl), наполнитель — бензин Б-70, антиокислитель — параоксидифениламин и краситель. При сгорании этилированного бензина выноситель способствует удалению свинца и его оксидов из камеры сгорания, превращая их в парообразное состояние. Они вместе с отработавшими газами выбрасываются в окружающее пространство и оседают вблизи дорог.

В придорожном пространстве примерно 50 % выбросов свинца в виде микрочастиц сразу распределяются на прилегающей поверхности. Остальное количество в течение нескольких часов находится в воздухе в виде аэрозолей, а затем также осаждается на землю вблизи дорог. Накопление свинца в придорожной полосе приводит к загрязнению экосистем и делает близлежащие почвы непригодными к сельскохозяйственному использованию.

Добавление к бензину присадки Р-9 делает его высокотоксичным. Разные марки бензина имеют различное процентное содержание присадки. Чтобы различать марки этилированного бензина, их окрашивают, добавляя в присадку разноцветные красители. Неэтилированный бензин поставляется без окрашивания (табл. 9).

В развитых странах мира применение этилированного бензина ограничивается или уже полностью прекращено. В России он еще находит широкое применение. Однако ставится задача отказаться от его использования. Крупные промышленные центры и курортные местности переходят на использование неэтилированных бензинов.

Негативное воздействие на экосистемы оказывают не только рассмотренные компоненты отработавших газов двигателей, выделенные в восемь групп, но и сами углеводородные топлива, масла и смазки. Обладая большой способностью к испарению, особенно при повышении температуры, пары топлив и масел распространяются в воздухе и отрицательно влияют на живые организмы.

В местах заправки транспортных средств топливом и маслом происходят случайные разливы и намеренные сливы отработанного масла прямо на землю или в водоемы. На месте масляного пятна длительное время не произрастает растительность. Нефтепродукты, попавшие в водоемы, губительно воздействуют на их флору и фауну.

v-mireauto.ru


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости