С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Устройство свечи зажигания


Устройство современных свечей зажигания

В бензиновом двигателе внутреннего сгорания (ДВС) для воспламенения, сжатой поршнем, топливно-воздушной смеси используется элемент получивший название – свеча зажигания. Изобрел ее Роберт Бош в далеком 1902 году после чего, одноименная компания внедрила ее в устройство ДВС.

Каково ее устройство?

Базовое устройство свечи зажигания примерно одинаковое у любой производящей её фирмы. Это – металлический корпус, электроды, число которых может меняться в зависимости от марки, керамический изолятор и проходящий сквозь него центральный контактный стержень. Дальше начинаются различия.

Центральный контактный стержень, например, может иметь наконечник в виде плоской площадки. Но может иметь U или V-образную канавку. Может быть заострённым – в случае, если изготовлен из иридия, как у свечей компании DENSO. У них даже боковой электрод имеет профиль особой формы. Эта компания выпускает самые, пожалуй, надёжные свечи – иридиево-платиновые.

У отдельных моделей бокового электрода может не быть вообще – в частности, инженеры компании SAAB разработали мотор, в которой сам поршень имеет заострённый выступ, функция у которого такая же, как у бокового электрода. Когда поршень максимально приближается к верхней мёртвой точки, между ним и центральным электродом проскакивает искра, поджигая сжатую топливно-воздушную смесь.

Уже упомянутые два и более боковых электрода так же меняют в лучшую сторону рабочие режимы и параметры работы мотора. Одновременно с этим возрастают и требования к рабочим зазорам, которые вообще не рекомендуют менять или как-то трогать подгибанием или разгибом, а только строго сохраняя заводские параметры их изготовления.

При этом принцип работы свечи с двумя и более электродами прост, не требуется никаких технических ухищрений для ее стабильной работы: когда, по мере выработки электрода, его «съедания» искрой, начинаются сбои искры, она автоматически появляется на невыработанном электроде, и процесс работы ДВС продолжается без перебоев.

Металлический корпус в нижней части с резьбой для вкручивания в головку блока цилиндров (ГБЦ) имеет плоскую или коническую кольцеобразную площадку. У свечей с плоской площадкой в комплекте имеется обжимное кольцо-шайба из мягкого металла, препятствующее прорыву сжатой топливно-воздушной смеси или продуктов сгорания наружу. У свечей с коническим профилем после резьбы в таком кольце нужды нет, сам конический профиль надёжно закупоривает верхушку камеры сгорания.

Центральные изоляторы во всех моделях делают из термостойкой керамики. Именно на неё наносится маркировка с типом, названием компании-производителя и т.д. Внутри, между контактом для провода и стержнем с центральным контактом, размещается резистор, главная функция которого – подавление радиопомех, возникающих в момент искрового разряда. С учётом развития радио- и телекоммуникаций и их внедрение в системы автомобиля, включая электронное управление впрыском, размещение такого резистора стало обязательным в устройстве свечи зажигания.

В той части, которая вкручивается в ГБЦ, центральный изолятор имеет форму постепенно сужающегося конуса – это сделано для того, чтобы более эффективно отводить тепло, не допуская перекала.

Вид современной свечи

Разнообразие технических решений в разработке и производстве бензиновых двигателей внутреннего сгорания породило и множество моделей свечей для них. В зависимости от применяемого топлива для машины, степени сжатия в цилиндре, способа управления зажиганием (механический, с помощью трамблёра, или электронным), их можно разделить на следующие виды.

Виды свечей

Они разделяются по нескольким характеристикам:

  1. Калильному числу.
  2. Количеству электродов.
  3. Искровому промежутку.
  4. Температурному диапазону.
  5. Сроку службы.
  6. Характеристикам термостойкости.

Кроме того, некоторые виды свечей зажигания разных годов выпуска одной и той же фирмы могут отличаться по длине юбки с резьбой: у ранних моделей автомобилей была меньшая толщина головок цилиндров, которые делались из чугуна и, соответственно резьба необходима более короткая. С переходом к ГБЦ из алюминиевых сплавов их толщина увеличилась, а значит – и длина резьбы в ней тоже стала большей.

Опытный автомобилист в начале всегда обратит внимание на калильное число, которое показывает, с каким давлением может возникнуть калильный эффект, то есть продолжение работы двигателя после разрыва цепи зажигания, когда от контакта с нагретым до критических значений электродом мотор продолжает работать.

При этом использование свечи с калильным числом больше рекомендованных использовать ещё допустимо, с заниженным же – эксплуатация двигателя запрещена! Иначе незадачливый водитель быстро столкнётся с проблемой прогорания поршней, клапанов и с пробоем прокладки головки цилиндров.

Для качественного и стабильного искрообразования в последние два десятка лет выпускают свечи с двумя, тремя и даже четырьмя боковыми электродами.

Но стабильность работы может быть достигнута и иным способом: расположением вспомогательных элементов, играющих роль этих электродов, на самом изоляторе свечи. Возникают несколько кольцевых блуждающих вокруг центрального электрода электрических разрядов, и таким образом, существенно уменьшается вероятность перебоя работы двигателя.

Спортивная свеча Brisk с промежуточными электродами на изоляторе

Приведем еще несколько важных моментов в характеристиках свечей:

  • Нарушение такого параметра, как искровой зазор, также отрицательно скажется на работе мотора;
  • Не менее важна термостойкость, её температурный диапазон, означающий нагрев той части, что погружена в пространство между поршнем и головкой цилиндра. Диапазон температур внутри рабочей части в норме лежит в рамках 500-900⁰С. Выход за пределы этого диапазона означает понижение ресурса. В частности, у всех видов свечей зажигания понижение температуры ведёт к быстрому нарастанию нагара;
  • В нормально отрегулированном двигателе работоспособность зависит от пробега и составляет примерно 30 000 км для свечей, работающих на классической схеме зажигания, и 20 000 – на электронной. Впрочем, у самых высоких по цене (но и у самых надёжных) свечей фирмы DENSO срок службы — до 5-6 лет. Или, иначе говоря, они обеспечат пробег без замены при условии стандартной эксплуатации на протяжении порядка 150 000 — 200 000 километров. Правда, и требования поддержания режимов согласно инструкции ужесточены. К этим требованиям относятся применение топлива с октановым числом ни в коем случае не ниже рекомендованного, и их установка строго по правилам. В частности, не допускается затяжка их в головку цилиндров с усилием выше или ниже рекомендованных, что может повлечь за собой сведение на нет всех их преимуществ;
  • Тепловой параметр показывает взаимосвязь режимов двигателя и рабочей температуры свечи. Для его повышения увеличивают размеры теплового конуса, придерживаясь, однако, рекомендованной величины в 900 градусов. Выход за эти границы увеличивает риск калильного зажигания.

Драгоценные металлы в конструкции свечи

Градация видов зависит не только от заявленных параметров. Описывая рабочие характеристики свечи зажигания, нужно учитывать ещё и из какого материала изготовлены наконечники электродов.

Самые дешёвые свечи – никелевые. Простота конструкции обуславливает и небольшой срок службы, поэтому их замена делается часто, после 15-18 тысяч километров пробега. Хотя в условиях города, учитывая неровность эксплуатации (стояние с работающим двигателем в пробках, частое чередование ускорения и торможения на светофорах) этот километраж можно смело делить на два, так что время эксплуатации никелевых свечей в норме составляет не больше года.

В платиновых свечах делаются платиновые напайки, что увеличивает срок их эксплуатации до 50 000 километров. Посмотрите стоимость платины в любом обменнике – и вы поймёте, почему эти напайки делают их такими дорогими.

В иридиевых свечах уже два драгоценных металла: иридий в виде напайки на острие центрального электрода и платина – на боковых. Учитывая стоимость иридия, цена на них по сравнению с никелевыми возрастает на 50-60%. Но технические характеристики свечи зажигания с иридием таковы, что проехать с ними можно уже от 60 до 200 тысяч километров.

Такие параметры свечи, как: диаметр резьбы; номер головки ключа под нее; длина юбки с резьбой; зазор между электродами, также относятся к их техническим характеристикам.

Заключение

Прогресс не стоит на месте. Новые технологии позволили, например, довести степень очистки металлов для электродов до 99,999%. Иридий, платина и даже никель такой чистоты способны увеличить срок службы свечи зажигания ещё на 15-18%, в пример поставим компанию DENSO. Кроме того, инженерная мысль продолжила их развитие, предложив факельный и форкамерный тип выработки искры, что сделало работу моторов ещё более стабильной.

Что же касается неизбежной в таком случае увеличения цены – сама возможность в процессе эксплуатации автомобиля как можно реже заглядывать под капот уже оправдывает покупку каждой свечи зажигания даже за 10-20 долларов за штуку.

Свечи зажигания: назначение, устройство и маркировка

Устройство свечи зажигания

Задачей свечи зажигания в бензиновом двигателе автомобиля является воспламенение топливно-воздушной смеси в камере сгорания. Детали свечи, находящиеся в камере сгорания, подвергаются высоким термическим, механическим, электрическим нагрузкам, а также химическому воздействию продуктов неполного сгорания топлива. Температура в ней изменяется от 70 до 2500°С, давление газов достигает 50-60 бар, а напряжение на электродах доходит до 20 кВ и выше. Такие жесткие условия работы определяют особенности конструкции свечей и применяемых материалов, так как от бесперебойности искрообразования зависят мощность, топливная экономичность, пусковые свойства двигателей, а также токсичность отработавших газов.

Основными элементами любой свечи зажигания являются металлический корпус, керамический изолятор, электроды и контактный стержень. Корпус имеет резьбу, которая ввинчивается в головку блока цилиндров, шестигранник «под ключ» и специальное покрытие для защиты от коррозии. Опорная поверхность может быть плоской или конической. В первом случае для надежной герметизации свечного отверстия используется уплотнительное кольцо. Материалом изолятора служит высокопрочная керамика. Для предотвращения утечки электричества на его поверхности (в верхней части изолятора) делают кольцевые канавки (барьеры тока) и наносят специальную глазурь, а часть изолятора со стороны камеры сгорания выполняют в форме конуса (называемого тепловым). Внутри керамической части свечи закреплены центральный электрод и контактный стержень, между которыми может быть расположен резистор, подавляющий радиопомехи. Герметизация соединения этих деталей осуществляется токопроводящей стекломассой (стеклогерметиком). Боковой электрод «массы» приварен к корпусу.

Электроды изготавливают из жаростойкого металла или сплава. Для улучшения отвода тепла от теплового конуса центральный электрод может изготавливаться из двух металлов (биметаллический электрод) — центральную часть из меди заключают в жаростойкую оболочку. Биметаллический электрод обладает повышенным ресурсом благодаря тому, что хорошая теплопроводность меди препятствует чрезмерному его нагреву. Это позволяет, помимо улучшения термоэластичности, повысить надежность и долговечность свечи. С целью увеличения срока эксплуатации выпускаются свечи зажигания с несколькими боковыми электродами и тонкоэлектродные с центральным электродом, покрытым слоем платины или иридия. Срок службы свечей зажигания (в зависимости от конструкции) составляет от 30 до 100 тыс. км.

Маркировка свечей

В маркировке свечи зажигания указываются ее геометрические и посадочные размеры, особенности конструкции и калильное число. Разные производители имеют свою систему обозначений. Ниже приведены маркировки, применямые российскими и ведущими зарубежными изготовителями, а также таблица взаимозаменяемости свечей разных марок (для просмотра нажмите на нужную картинку — файл откроется в новом окне).

Варианты замены свечей

Варианты замены свечей

Калильное число является показателем тепловых свойств свечи (ее способности нагреваться при различных тепловых нагрузках двигателя). Оно пропорционально среднему давлению, при котором в процессе испытаний свечи на моторной тарировочной установке в ее цилиндре начинает появляться калильное зажигание (неуправляемый процесс воспламенения рабочей смеси от раскаленных элементов свечи). Свечи с небольшим калильным числом называют горячими. Их тепловой конус нагревается до температуры 900°С (температура начала калильного зажигания) при относительно небольшой тепловой нагрузке. Такие свечи применяются на малофорсированных двигателях с небольшими степенями сжатия. У холодных свечей калильное зажигание возникает при больших тепловых нагрузках, и они используются на высокофорсированных двигателях.

Пока тепловой конус не нагреется до 400°С, на нем образуется нагар, приводящий к утечкам тока и нарушению искрообразования. По достижении этой температуры он (нагар) начинает сгорать, происходит очищение свечи (самоочищение). Чем длиннее тепловой конус, тем больше его площадь, поэтому он нагревается до температуры самоочищения при меньшей тепловой нагрузке. К тому же выступание этой части изолятора из корпуса усиливает ее обдув газами, что дополнительно ускоряет прогрев и улучшает очищение от нагара. Увеличение длины теплового конуса приводит к уменьшению калильного числа (свеча становится «горячее»).

Свеча зажигания может обеспечить бесперебойную работу только при соблюдении нижеперечисленных условий:

  • используются свечи, рекомендованные изготовителем двигателя;
  • используется марка бензина, указанная в руководстве по эксплуатации автомобиля;
  • исправны системы зажигания и питания;
  • не превышено усилие при вворачивании свечи в головку блока двигателя.

Наиболее вероятной причиной преждевременного отказа свечей является загрязнение их продуктами неполного сгорания или увеличение искрового зазора из-за износа электродов. При этом решающее влияние на работоспособность свечей оказывает техническое состояние двигателя. Даже по внешнему виду свечи можно многое сказать как о работе двигателя в целом, так и об отдельных его узлах. Осмотр свечи нужно проводить после продолжительной работы двигателя, идеальным вариантом будет осмотр свечи после длительной поездки по загородному шоссе. Ошибкой некоторых автолюбителей, например является то, что после холодного старта двигателя при минусовой температуре и неустойчивой его работе первым делом выкручивают свечи и увидев черный нагар, делают поспешные выводы. А ведь этот нагар мог образоваться во время работы двигателя в режиме холодного старта, когда смесь принудительно обогащается, а неустойчивая работа могла быть следствием скажем плохого состояния высоковольтных проводов. Поэтому если вас что-то не устраивает в работе двигателя, и вы решили сделать диагностику его работы с помощью свечей, нужно проехать на изначально чистых свечах минимум километров 250-300, и только после этого делать какие-то выводы.

Диагностика двигателя по состоянию свечей

На фото №1 изображена свеча, вывернутая из двигателя, работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему: это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

Фото №2 — типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора, угла опережения зажигания или неисправностьсистемы впрыска), засорение воздушного фильтра.

Фото №3 — наоборот, пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов.

На фото №4 юбка центрального электрода свечи имеет характерный красноватый оттенок. Этот цвет можно сравнить с цветом красного кирпича. Покраснение вызвано работой двигателя на низкокачественном топливе, содержащем избыточное количество присадок, которые имеют в своем составе металл. Длительное использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

На фото № 5 свеча имеет ярко выраженные следы масла, особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки имеет обыкновение после запуска «троить» некоторое время, а по мере прогрева работа стабилизируется. Причина этого — неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.

Фото № 6 — свеча вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла, смешанного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого — разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель «троит» уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один — ремонт.

Фото № 7 — полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованая свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное, на что можно надеяться, так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров.

Фото № 8 последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста — сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное синее дымление, запах выхлопа похож на мотоциклетный.

Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, вспоминайте о свечах не только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Однако не лишним будет в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего это проверка и, при необходимости, регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7.

Свечи зажигания: устройство, виды, неисправности и проверка в домашних условиях

Свечи зажигания присутствуют в каждом авто и каждый из автовладельцев хотя бы раз в жизни пытался «разобраться» с ними самостоятельно. В руководстве по эксплуатации машины всегда указан тип свечей, рекомендуемый производителем. Стоит разобраться, чем отличаются между собой свечи разного типа и различных производителей? Есть ли разница при замене одного типа свечей на другие в работе машины?

Зачастую автовладельцы не могут определиться с выбором, покупать дешевые свечи или же качественные

Виды и принцип работы

Свечи зажигания поджигают смеси, образованные при смешивании топлива и воздуха. В зависимости от производителя конструкция свечей различна, однако, можно выделить две группы. Их виды:

Скидки на новые автомобили! Выгодный кредит от 9.9%Рассрочка 0%
  • многоэлектродные свечи зажигания;
  • двухэлектродные.

Двухэлектродные устройства оснащены единственным боковым электродом, в отличие от них многоэлектродные свечки состоят из нескольких боковых электродов. Последние оправдывают себя длительным временем службы. В наиболее распространённых двухэлектродных элементах искра идёт по двум электродам, которые изнашиваются. Выход из строя бокового электрода — это полная замена свечи. Искра в многоэлектродном устройстве идёт только на один боковой электрод, что увеличивает время работы свечи.

Свечи зажигания отличны друг от друга также материалом. В классических устройствах второстепенные электроды сделаны из стали. Самые дорогостоящие свечки оснащены платиновыми напайками, кроме того, совсем недавно начали выпуск плазменно-форкамерных свечей зажигания. Наконечник основного электрода сделан из сплавов, состоящих из железа, никеля и вкраплений хрома и меди. Боковая часть центрального элемента часто выгорает, её необходимо периодически проверить на неисправность. Изолятор практически всегда изготовлен из керамики алюминиевого состава, переносящего температуры свыше 1000 °C. Тепловая маркировка свечей зажигания напрямую зависит от состава и пропорции различных компонентов, содержащихся в изоляторе.

Кроме того, свечки различаются типом и длиной резьбы, размером головки.

Устройство свечи зажигания

Любая свечка, независимо от её вида и производителя, состоит из металлического корпуса, электродов, изолятора из керамики и основного контактного стержня. Основа корпуса, покрытая специальным средством от коррозии, вверху оснащена резьбой, встраиваемой в блок цилиндров, и шестигранником. Часть плоскости, которой свечка «сталкивается» с головкой, имеет плоскую либо коническую форму. При наличии плоской опорной части для лучшей герметизации встроено кольцо-уплотнитель. В отличие от первого конический верх самостоятельно герметизирует отверстие между свечой зажигания и головкой блока. Изолятор сделан из прочной керамики. Устройство свечи зажигания продумано до мелочей, чтобы избежать утечки электричества в изоляторе предусмотрены кольцевые продольные полосы и нанесена техническая глазурь, часть корпуса рядом с камерой сгорания делают в виде конуса. С внутренней стороны к изолятору прикреплены главный электрод и стержень. В некоторых моделях зазор между ними заполняет резистор, препятствующий возникновению радиопомех. Соединения плотно герметизируются стекломассой с высокой токопроводностью. Рядом с центральным имеется боковой электрод, который изготавливается из жаропрочного металла и приваривается к корпусу. Чтобы уменьшить тепловое воздействие основной электрод выполняют из нескольких металлов (меди и жаропрочной оболочки).

Признаки неисправности свечей зажигания

Стабильная работа свечи обеспечивает автовладельцу надёжное функционирование бензинового силового агрегата. Однако проблем в работе свечей просто не избежать. Давайте разберёмся, когда менять свечи зажигания:

  • автомобиль начал заводиться не с первого раза, двигатель работает с трудом, «кашляет» недовольно на холостом ходу. Это один из самых первых признаков на необходимость проверить свечи на неисправность;
  • расход топлива в последнее время ощутимо увеличился, кроме того, в выхлопных газах возросло СО и СН;
  • одна из свечей все время мокрая от попадающего на неё бензина (именно она будет неисправна).
  • при работе мотора проявляется отрицательная динамика (заметна сниженная мощность или авто недобирает обороты).
  • появилось «троение» (машину во время езды поддёргивает, в двигателе недостаёт мощности).

Не стоит ждать, что это пройдёт, если есть хоть один из описанных признаков, следует взять ящик с инструментами и основательно проверить функционирование свечек. Вовремя не заменённые детали могут в кратчайшие сроки нанести огромный урон как автомобилю, так и кошельку владельца. Все производители авто рекомендуют заменять эти детали при ежегодном прохождении техобслуживания.

Способы диагностики

Диагностика силового агрегата предусматривает осмотр свечей как важного элемента системы зажигания. Практически во всех автомобилях зарубежного и отечественного производства они легкодоступны, автолюбители сами могут их проверить. Для того чтобы проверка прошла удачно, их нежелательно путать и менять местами относительно цилиндров, лучше всего рассматривать их в порядке расположения.

Есть несколько способов, позволяющих проверить работоспособность свечек в домашних условиях. Перед их снятием, в первую очередь нужно отсоединить провода, идущие к распределителю. Определить, какая именно свеча перестала работать, можно сняв их по одной и прослушав при этом работу двигателя. Неизменённый звук говорит о проблеме в отключённой детали.

Проверка искры

Первый способ проверки в домашних условиях — наличие искры. Тщательно очищенную от различных загрязнений свечку с помощью прибора (щупа) регулируют на расстоянии с электродами. Покрывают её проводом и примыкают к металлической основе силового агрегата. Это делается для того, чтобы создать электрический контакт. Проверить работу свечей (наличие и цвет искры) необходимо посредством включённого на пару секунд стартера. У нормально функционирующей свечки искра имеет голубой цвет, если же в искре проглядывается красный цвет или его, вообще, нет, значит, свеча подлежит замене.

Проверка мультиметром

Вторым способом проверить работоспособность свечки намного проще, для этого необходим мультиметр — прибор, который зачастую называют тестером. Это устройство проверяет наличие либо отсутствие короткого замыкания. Однако проверка мультиметром не всегда точно может указать неисправность. Простой в обращении аппарат имеет понятную для простого автолюбителя форму. Проверка свечки проводится следующим образом: на свечи зажигания ложатся провода от прибора так, чтобы первый провод находился на выходе, а другой был прикреплён на цоколь. В работоспособном положении появляется искра, с нахождением в 4 мм относительно контактов.

Проверка «пистолетом»

Третий способ поверки самый изощрённый — это проверка пистолетом. Чтобы сделать её самому, необходим стенд, проводящий такую проверку под некоторым давлением. В наше время купить такое устройство можно в магазине, торгующем автозапчастями. Проверить свечку необходимо так: вставить её в определённое отверстие и одеть специальный колпачок. Заложенная исправная свеча после нажатия на курок должна отреагировать на электродах искрой и загоревшейся лампочкой. Стоит помнить, что пистолет, из-за разности давления в нём и в авто, не может дать точного результата. Однако не работающая при проверке пистолетом свеча должна быть заменена в ближайшее время.

Заключение

Даже небольшие нарушения и неполадки со стороны свечей зажигания могут при недобросовестном отношении автовладельца привести к серьёзным сбоям в работе машины. Стоит знать, что проверку этого устройства может сделать любой водитель. Чтобы все сделать правильно, необходимо лишь следовать описанным выше действиям.

В помощь будущему автомеханику - свечи зажигания

Понедельник, 31.12.2018, 22:36Приветствую Вас Гость | RSS
Главная | Регистрация | Вход

ТО и ремонт автомобилей Узнай всё про автомобиль

Устройство, назначение принцип работы свечи зажигания

Назначение свечи зажигания

Принцип действия свечи зажигания

Основные характеристики и определения свечи зажигания

Условия работы свечи зажигания

Основные параметры свечей зажигания

Устройство свечи зажигания

Маркировка свечей зажигания

Назначение свечи зажигания

Одним из важнейших элементов систем зажигания двигателей внутрен­него сгорания являются свечи. Предназначены они для воспламенения горючей смеси в цилинд­рах при помощи искрового разряда.

Искровой разряд, создаваемый системой зажигания, должен обладать энергией, необходимой для воспламенения горючей смеси на любом режиме работы двигателя при всех условиях эксплуатации.

Различаются свечи по конструкции, размерам и тепловым характеристикам (калильным числам). Они могут быть неэкранированными, если их контактная часть выступает из металлического корпуса, и экранированными, у которых контактная часть расположена внутри металлического экрана.

Искровой разряд у большинства свечей образуется непосредственно в искро­вом зазоре между электродами. 

При высоких значениях давления и температуры, возникающих в процессе работы двигателя, свечи должны надежно противостоять воздействию химиче­ски агрессивных продуктов сгорания. При этом изолятор должен выдерживать высокое электрическое напряжение.

В процессе работы из-за неполноты сгорания в пристеночной зоне на рабо­чих деталях свечи образуется нагар. Чтобы избавиться от него свечи должны самоочищать­ся, автоматически поддерживая необходимую рабочую температуру в темпера­турных пределах, обеспечивающих удаление нагара и исключающих возмож­ность калильного зажигания.

Свечи должны обеспечивать свою работоспособность в условиях с повышенными электри­ческими. механическими и химическими нагрузками. Непрерывный рост мощностей двигателей при ужесточении норм токсичности отработавших газов предъявляет к свечам все более жесткие требования по надежности и долговечности.

От совершенства конструкции, качества изготовления и правильности подбо­ра свечи к двигателю сильно зависят его пусковые свойства, надежность, мощность, топливная экономичность, а также токсичность отработавших газов.

В свою очередь, работоспособность свечи зависит от ее соответствия двига­телю по конструкции, основным размерам, величине искрового зазора и тепло­вой характеристике. Решающее влияние на надежность и долговечность свечи оказывает техническое состояние двигателя, характер и условия эксплуатации, качество топлива и моторного масла.

Принцип действия свечи зажигания

Газы и их смеси являются идеальными изоляторами. Но при приложении к электродам свечи достаточно высокого напряжения происходит пробой газа, и в искровом зазоре образуется ионизированный канал, проводящий электри­ческий ток.

Явление пробоя газа высоким напряжением обусловлено тем, что случайные электроны, появление которых вызвано проникающим ионизирующим  излучением, под воздействием электромагнитного поля получают ускорение в сторону положительного электрода.

При столкновении с молекулами газа про­исходит цепная реакция ионизации, газ становится проводником, и образуется проводящий канал.

Это явление называется пробоем, первой фазой существова­ния искры.

После пробоя электрическое сопротивление канала стремится к нулю, сила тока увеличивается до сотен ампер, а напряжение уменьшается.

Первона­чально процесс протекает в очень узкой зоне, но вследствие быстрого нарастания температуры канал расширяется со сверхзвуковой скоростью. При этом образу­ется ударная волна, воспринимаемая на слух как характерный треск, создаваемый искрой.

Протекание сильного тока приводит к появлению электрической дуги, и температура в канале разряда при определенных условиях может достиг­нуть величины до 6000 К.

Скорость расширения проводящего канала стабили­зируется. а затем уменьшается до нормальной скорости распространения пла­мени.

При силе тока ниже 100 мА возникает тлеющий разряд, и температура уменьшается до 3000 К.

По мере убывания энергии, запасенной во вторичной цепи системы зажигания, искровой разряд угасает.

Тлеющий разряд более продолжителен, чем дуговой, и плазма разряда может перемещаться относительно электродов свечи с потоком смеси газов в цилиндре, возникающим вследствие движения поршня. Эффективная длина искры возрастает, а напряжение разряда увеличивается.

Если напряжение оказывается недостаточ­ным для поддержания искры, появляется вероятность ее угасания и повторного возникновения. Из-за остаточной ионизации в искровом зазоре повторная искра возникает при значительно меньшем напряжении, она по целому ряду причин менее эффективна для воспламенения.

В горючей смеси невозможно разделить процессы образования искрового разряда и воспламенения. Уже на этапе пробоя можно обнаружить продукты химических реакций горения. Эффективность первичного очага воспламенения определяется энергией искрового разряда и дополнительной энергией химических реакций горения.

Если скорость расширения плазмы разряда превышает скорость распро­странения пламени, большее значение имеет энергия искры. Когда скорость расширения канала уменьшается, большее значение приобретает энергия химических реакций.

Основные характеристики и определения свечи зажигания

Верхний температурный предел те­пловой характеристики - величи­на, равная рабочей температуре свечи, при которой возникает ка­лильное зажигание.

«Горячая» или «холодная» свечи - при прочих равных условиях имею­щие соответственно большую или меньшую рабочую температуру.

Детонация - аномальный процесс сгорания, имеющий взрывной ха­рактер с резким местным повыше­нием температуры и образованием ударной волны. Сопровождается звонким металлическим стуком, вызванным вибрацией деталей двигателя.

Искрообразование - возникновение искрового разряда в искровом за­зоре свечи в период от пробоя до угасания.

Искровая свеча зажигания (свеча зажигания, свеча) - электриче­ский ввод в комбинации с искро­вым разрядником, предназначен­ный для воспламенения горючей смеси в цилиндре двигателя при помощи искрового разряда в зазо­ре между электродами.

Искровой зазор - промежуток между изолированным центральным элек­тродом и боковым электродом -массы».

Искровой разряд (электрическая искра, искра) - нестационарный электрический разряд в газе, воз­никающий в электрическом поле.

Калильное зажигание - воспламене­ние горючей смеси, вызванное от­дельными перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

Калильное число свечи - условная величина, численно равная средне­му индикаторному давлению в ци­линдре двигателя испытательной установки, при котором появляется калильное зажигание.

Контактная часть свечи - элементы со стороны высоковольтного про­вода: головка изолятора, контакт­ная головка и контактная гайка.

Нагар - образовавшиеся на поверхно­сти рабочей части свечи продукты неполного сгорания.

Нижний температурный предел те­пловой характеристики - величи­на, равная температуре рабочей части свечи, при которой нагар вы­горает.

Работоспособность свечи - обеспече­ние бесперебойного новообразова­ния и герметичности в условиях, пре­дусмотренных нормативно-техниче­ской документацией и стандартами.

Рабочая камера свечи - полость, образуемая внутренней поверхно­стью корпуса и наружной поверхно­стью теплового конуса изолятора, сообщающаяся с камерой сгора­ния двигателя.

Рабочая температура свечи - тем­пература рабочей части свечи на данном режиме работы двигателя.

Рабочая часть свечи - элементы, расположенные непосредственно в камере сгорания: тепловой конус изолятора, торец центрального электрода и боковой электрод.

Тепловой конус изолятора (юбка изолятора) - часть изолятора, расположенная в рабочей каме­ре свечи, воспринимающая своей поверхностью поток тепла от пламени и раскаленных сгоревших газов.

Тепловая характеристика свечи - зависимость рабочей температу­ры свечи от режимов работы дви­гателя.

Цоколь свечи - часть корпуса с резь­бой, предназначенная для уста­новки свечи в двигателе и для связи электрической цепи высоко­го напряжения системы зажигания с «массой».

Шунтирование системы зажига­ния - короткое замыкание высоко­вольтной цепи системы зажигания на «массу» при утечке тока по нага­ру на поверхности теплового кону­са изолятора и (или) по токопро­водящему мостику в искровом зазоре.

Электропроводный (токопроводя­щий) мостик - нагар, частично или полностью заполняющий искровой зазор, обладающий проводи­мостью и создающий электриче­скую цепь, замыкающую изолиро­ванный

Условия работы свечи зажигания

Современные поршневые двигатели внутреннего сгорания работают по четы­рехтактному или двухтактному рабочему циклу.

Автомобильные двигатели, за ред­ким исключением, работают по четырехтактному циклу, осуществляемому за два полных оборота коленчатого вала и четыре хода поршня. Двигатели различного назначения особо малого рабочего объема работают по двухтактному циклу, осу­ществляемому за один оборот коленчатого вала и два хода поршня.

В процессе работы двигателя на свечи воздействуют переменные электриче­ские, тепловые, механические и химические нагрузки с частотой, пропорцио­нальной частоте вращения коленчатого вала. Нагрузка на свечу при работе на двухтактном двигателе по меньшей мере вдвое больше, чем на четырехтактном, что существенно уменьшает срок ее службы.

Тепловые нагрузки.

Свечу устанавливают в головке блока цилиндров так, что ее рабочая часть находится в камере сгорания, а контактная - в подкапотном пространстве. Температура газов в камере сгорания изменяется от нескольких десятков градусов Цельсия на впуске до двух-трех тысяч при сгорании. Темпера­тура под капотом автомобиля может достигать 150°С.

На многих автомобилях, и тем более мотоциклах, не исключена возможность попадания воды на свечу, особенно при мойке, что может привести к поврежде­нию изолятора.

Из-за неравномерности нагрева температура 8 различных сечениях свечи мо­жет отличаться на сотни градусов, что приводит к тепловым напряжениям и дефор­мациям. Это усугубляется тем, что изолятор и металлические детали значительно отличаются по величине коэффициента термического расширения.

Механические нагрузки.

Давление в цилиндре двигателя изменяется от давления ниже атмосферного на впуске до 50 кгс/см2 и выше при сгорании. При этом свечи дополнительно подвергаются вибрационным нагрузкам.

Химические нагрузки.

При сгорании образуется целый «букет» химически активных веществ, способных вызвать окисление даже весьма стойких материа­лов, тем более что рабочая часть изолятора и электродов может иметь рабочую температуру до 900°С.

Электрические нагрузки.

При искрообразовании, длительность которого может составлять до 3мс, изолятор свечи оказывается под воздействием им­пульса высокого напряжения, максимальное значение которого зависит от дав­ления и температуры в камере сгорания и величины искрового зазора. В неко­торых случаях напряжение может достигать 20-25 кВ (амплитудное значение).

Некоторые типы систем зажигания могут создавать напряжение значительно выше, но его ограничивает пробивное напряжение искрового зазора или напря­жение поверхностного перекрытия изолятора.

В дуговой фазе разряда протекание сильного тока приводит к появлению го­рячих катодных пятен на электроде. Электрическая дуга не может существовать без электронов, излучаемых горячими катодными пятнами. Температура пятен достигает 3000К, что выше температуры плавления любого материала электро­дов. Это приводит к неизбежному микроскопическому испарению материала электрода с каждой новой искрой. Скорость электрической эрозии при прочих равных условиях пропорциональна энергии искрового разряда и температуре электрода.

Отклонения от нормального процесса сгорания

Нормальное сгорание рабочей смеси происходит со скоростью нескольких десятков метров в секунду и сопровождается относительно плавным нарастани­ем температуры и давления в цилиндре двигателя. В результате искрового зажи­гания образуется первичный очаг воспламенения, затем формируется фронт пламени, который быстро распространяется по всему объему камеры сгорания. Несгоревшее топливо догорает уже за фронтом пламени, в пристеночных зонах, в зазорах между поршнем и цилиндром.

При некоторых условиях нормальный процесс сгорания может нарушаться, что отражается на надежности и сроке службы свечи. К таким нарушениям мож­но отнести следующие.

Пропуски воспламенения.

Могут возникнуть из-за переобеднения горючей смеси, пропусков искрообразования или недостаточной энергии искры. При этом усиливается процесс образования нагара на изоляторе и электродах.

Калильное зажигание.

Различают преждевременное, до появления искры, сопровождающее появление искры и запаздывающее, возникающее после воспламенения горючей смеси, вызванное перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

Преждевременное воспламе­нение может быть вызвано тлеющими частицами нагара.

При преждевременном калильном зажигании самопроизвольно увеличивается угол опережения зажига­ния. Это приводит к росту скорости нарастания давления и температуры, увели­чивается их максимальное значение, детали двигателя перегреваются и угол опережения зажигания еще больше увеличивается. Процесс принимает ускоря­ющийся характер до момента, когда угол опережения зажигания станет таким, что мощность двигателя начнет стремительно падать.

При калильном зажигании вероятны повреждения выпускного клапана, поршня, поршневых колец, поверхности цилиндра и прокладки головки блока цилиндров. У свечи могут полностью или частично сгореть электроды, а в некоторых случаях может даже оплавиться изолятор.

Детонация.

Это явление возникает при недостаточной детонационной стойкости топлива в наиболее удаленном от свечи месте у горячих поверхно­стей, в результате сжатия еще не сгоревшей горючей смеси основным фронтом пламени.

Ударные волны при детонации распространяются со скоростью 1500-2500 м/с, что превышает скорость звука. Они многократно отражаются от стенок и вызывают вибрацию и локальный перегрев цилиндра, поршня, клапанов и свечи. Возможны повреждения, как при калильном зажигании, так как перегретые детали становятся неспособными выдерживать возросшую нагрузку. На изоляторе свечи могут образоваться сколы и трещины, электро­ды могут оплавиться и даже полностью выгореть.

Характерными признаками детонации являются металлические стуки, вибрация и потеря мощности двига­теля, увеличение расхода топлива и иногда появление черного дыма из выпуск­ной трубы.

Особенностью детонации является некоторая задержка по времени от момента наступления необходимых условий до ее возникновения. Задержка необходима для образования активных веществ, способствующих возникновению взрывного процесса. В связи с этим детонация более вероятна при относительно небольших оборотах коленчатого вала и полной нагрузке.

Наиболее вероятен выход на этот режим при движении автомобиля на подьеме при полностью нажатой педали газа. Если при этом мощность двигателя оказывается недостаточной, скорость автомобиля и частота вращения коленчатого вала уменьшаются. При недостаточ­ном в данных условиях октановом числе топлива возникает детонация, сопровож­даемая звонким металлическим стуком.

Для устранения детонации достаточно перейти на пониженную передачу и увеличить обороты двигателя.

Безусловным является требование использовать только топливо, соответст­вующее двигателю по октановому числу.

Дизелинг.

В некоторых случаях возникает крайне неравномерная неуправляе­мая работа бензинового двигателя с выключенным зажиганием при очень малой частоте вращения коленчатого вала. Это явление возникает из-за самовоспла­менения горючей смеси при сжатии, подобно тому, как это происходит в дизелях. В русской технической литературе «дизелинг» является сравнительно новым тер­мином, взятым из английского языка (dieseling).

На двигателях, преимущественно карбюраторных, где не исключена воз­можность подачи топлива в цилиндр при выключенном зажигании, дизе­линг возникает при попытке остановить двигатель. При выключении зажигания двигатель продолжает работать с очень малыми оборотами и крайне неравно­мерно. Это может продолжаться несколько секунд, иногда дольше, затем двига­тель самопроизвольно останавливается. Объяснять это явление калильным за­жиганием от перегретой свечи было бы неправильно, она тут ни при чем.

Причина дизелинга - в особенностях конструкции камеры сгорания и в каче­стве топлива (то есть дизелинг наступает при низкой стойкости топлива к само­воспламенению при сжатии). Свечи не могут являться причиной этого явления, так как их температура при малых оборотах явно недостаточна для воспламене­ния горючей смеси. Калильное зажигание возникает при температуре электро­дов и изолятора 850-900°С, такой величины она может достигнуть только при работе двигателя с максимальной мощностью. При остановке двигателя темпе­ратура этих деталей не превышает 350°С. Свеча в этих условиях не причина, а скорее «жертва», так как из-за неполноты сгорания усиливается процесс обра­зования нагара.

Качество топлива и моторного масла

Для обеспечения нормальной работы свечей автомобильные бензины долж­ны иметь достаточную детонационную стойкость, минимальное коррозионное воздействие и не иметь склонности к отложениям.

Детонационная стойкость топлива зависит от его химического состава и структу­ры углеводородов, полученных при переработке нефти. Способность сопротив­ляться появлению детонации зависит от молекулярной массы - чем она выше, тем ниже стойкость топлива к детонации и наоборот. Стойкость бензина к детонации, так называемое октановое число, определяется в лабораторных условиях моторным и исследовательским методом на специальной моторной установке, путем сравнения стойкости испытуемого бензина и изооктана в смеси с гептаном. Октановое число изооктана принимают равным 100. Добавка гептана, нестойкого к детонации, снижает октановое число смеси.

Промышленное производство бензина включает первичную и вторичную перера­ботку нефти с последующим смешением различных компонентов для получения необходимых свойств.

При первичной переработке нефти (прямой перегонке) получают 10-25% бензина невысокого качества с октановым числом 40-50. При вторичной переработке неф­ти на крупных нефтеперерабатывающих заводах ее подвергают сложной технологи­ческой обработке с целью расщепления крупных молекул на мелкие, стабилизации химического состава и удаления вредных примесей, особенно серы. Выход бензи­на увеличивается до 60 %. Затем, путем смешения продуктов первичной и вторич­ной переработки нефти с добавлением различных присадок получают товарные бензины. Автомобильные бензины одной мархи, производимые на разных предпри­ятиях, в связи с разницей в технологии, имеют несколько различные составы.

Для повышения октанового числа в бензин добавляют антидетонаторы - хи­мические соединения, подавляющие детонацию. Для удаления из камеры сгора­ния продуктов сгорания при применении антидетонационных присадок в топливо добавляют так называемые выносители - химические вещества, способствую­щие удалению продуктов сгорания. Тем не менее, условия работы свечи при ис­пользовании антидетонаторов существенно ухудшаются.

Полностью удалить продукты сгорания не удается, и на электродах и тепло­вом конусе изолятора свечи образуется нагар. Под воздействием температуры эти отложения могут стать электропроводящими и вызвать частичный или пол­ный отказ 8 искрообразовании.

Небольшие фирмы получают высокооктановые бензины АИ-95 и АИ-98 путем добавки в бензины АИ-92 и АИ-95 до 12-15% метил-трет-бутилового эфира, при этом бензин имеет необходимое качество. Достаточно широко используются раз­личные железосодержащие антидетонаторы и традиционный антидетонатор на ос­нове тетраэтилсвинца (ТЭС). В бензин добавляют краситель, так как ТЭС ядовит.

К сожалению, недобросовестные производители изготавливают суррогатный бензин из низкооктановых бензинов, добавляя антидетонационные присадки свыше действующих норм.

Сверхнормативное использование (более 37 мг Fe/л) содержащих железо антидетонаторов, например ФерРоз, ФК-4 или АПК вызывает отложение токо­проводящего нагара красного цвета на свечах. Этот нагар практически невоз­можно удалить, он приводит к полному и необратимому их отказу.

Коррозионное воздействие бензина определяется содержанием кислот, щело­чей и сернистых соединений. Сильным коррозионным воздействием на металлы обладают минеральные кислоты и щелочи, их наличие в бензинах недопустимо. Сернистые соединения обладают высокой коррозионной активностью и способст­вуют образованию нагара, однако полностью избавиться от них непросто, особен­но при переработке сернистой нефти.

Большинство моторных масел имеют нефтяное происхождение и содержат присадки: противостоящие износу, стабилизирующие, антикоррозионные, мою­щие и т. д. При сгорании масла, попавшего в камеру сгорания, образуются зольные остатки, которые, как и продукты неполного сгорания топлива, могут образовывать нагар на свечах.

Образование нагара и самоочищение

Нагар на свече - это твердая углеродистая масса с шероховатой поверхностью, образующаяся при температуре поверхности 200°С и выше. Свойства, внешний вид и цвет нагара зависят от условий его образования, состава топлива и моторно­го масла. В некоторых случаях, особенно на двухтактных двигателях, нагар может образовать в искровом зазоре электропроводный мостик и вызвать короткое замы­кание во вторичной цепи системы зажигания.

И в том, и в другом случае происхо­дит частичное или полное прекращение искрообразования.

Если свечу очистить от нагара, то ее работоспособность восстанавливается. Поэтому одно из важней­ших требований к свече - способность самоочищаться от нагара. Во многом степень совершенства ее конструкции определяется именно этим свойством.

Удаление нагара, если в продуктах сгорания нет несгораемых веществ, проис­ходит при температуре 300-350°С - это нижний температурный предел работо­способности свечи.

Эффективность самоочищения от нагара зависит от того, как быстро тепловой конус изолятора нагреется до этой температуры после пуска двигателя. С этой точки зрения длину теплового конуса изолятора необходимо выполнять как можно большей, а сам тепловой конус целесообразно выдвигать в камеру сгорания.

То же самое требуется для предотвращения утечек тока и соот­ветственно для снижения потерь энергии зажигания.

Тепловая характеристика

Тепловая характеристика свечи - это зависимость температуры теплового конуса изолятора или центрального электрода от режима работы двигателя.

Различие в тепловых характеристиках свечей достигают в основном за счет изменения длины теплового конуса изолятора.

Удлинение теплового конуса изолятора приводит к увеличению подвода тепла в свечу и к росту ее рабочей температуры. Максимальное значение температуры не может превышать

1,2,3


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости