42460 Опубликовано 26 апреля 2017
Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.
В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии
Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.
Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений. Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.
Схемы и формулы при последовательном соединении батарей
При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.
Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.
Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.
Параллельное соединение батарей с формулами
Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников. Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.
В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры. Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя. Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.
Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.
ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.
Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:
Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:
1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.
2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.
Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В
Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.
Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.
Последовательно-параллельная схема подключения на примере литий-ионных батарей
Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:
Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.
Главная > Теория > Устройство аккумулятора
В основу работы такого распространённого устройства, как автомобильный аккумулятор (АКБ), заложен химический эффект «двойной сульфатации», который был открыт ещё в 19 веке. С тех пор появилось множество различных модификаций и типов таких изделий, однако суть их функционирования и устройство аккумулятора остаются всё теми же, а изменился лишь внешний вид.
Внешний вид АКБ
Единственное, что удалось достичь инженерам за эти годы, – повысить эффективность протекающих при сульфатации химических реакций и сократить непроизводительные расходы на изготовление аккумуляторной продукции.
Прежде чем рассмотреть, как работает аккумулятор, имеет смысл ознакомиться с основными функциями, которые он выполняет в автомобиле. Свинцово-кислотные АКБ, устанавливаемые в современную машину, имеют сразу несколько назначений, основными из которых являются:
Важно! В последних двух случаях основное назначение аккумуляторной батареи – выполнять функцию своеобразного буфера, обеспечивающего подкачку энергии в дополнение к основному её источнику – встроенному генератору.
Такой режим необходим при недостаточных оборотах двигателя, характерных для медленной езды или остановки в пробках, когда генератор работает не на полную мощность, а потребители нуждаются в дополнительной подпитке.
Особую роль принимает на себя этот элемент в критических ситуациях, связанных с обстоятельствами из разряда «форс-мажорных». Это поломка электрогенератора или же одного из управляющих элементов, работающих в цепи бортового питания (регулятора напряжения, выпрямителя и т. д.). К этой же категории неполадок с автомобилем следует отнести обрыв приводного ремня генератора.
При рассмотрении конструкции кислотной АКБ в ней можно выделить следующие важнейшие составляющие:
Дополнительная информация. Каждая из таких банок – полноценный источник тока, который при объединении с другими образует батарею питающих элементов на соответствующее напряжение.
Помимо указанных составляющих, в комплект аккумуляторной батареи входят межэлементные перемычки и ручка для удобства переноски изделия.
Все рассмотренные выше компоненты АКБ (пакеты) заливаются раствором очищенной серной кислоты, разбавленной до нужной концентрации посредством дистиллированной воды. Общее представление о составе типового аккумулятора можно получить, ознакомившись с размещённым ниже рисунком.
Устройство АКБ
Принцип работы аккумулятора состоит в следующем:
При подаче на клеммы АКБ напряжения 12 Вольт (при его подзарядке) наблюдается процесс, обратный его разрядке. При этом свинцовая составляющая полностью восстанавливается до исходного состояния с одновременным повышением концентрации (плотности) электролита. Таким образом, можно сказать, что принцип действия аккумулятора состоит в протекании химических реакций в искусственно созданных условиях аккумуляторной батареи.
«Штатная» подзарядка свинцово-кислотного АКБ осуществляется от электрогенератора во время передвижения транспортного средства. При интенсивном расходе мощности батареи она нуждается в дополнительном восстановлении, производимом в стационарных условиях (в гараже или непосредственно в доме).
Для такой подзарядки потребуется специальное устройство, получившее название «зарядное». Его электрическая схема имеется в любой литературе, посвящённой обслуживанию автомобильных батарей (смотрите фото ниже).
Зарядное устройство
Важно! Особенно востребован такой прибор при зимней эксплуатации автомобиля, то есть в условиях, когда способность охлаждённой батареи к зарядке резко понижается.
Одновременно с этим потребление электроэнергии, затрачиваемой на раскрутку холодного двигателя, резко возрастает. В связи с этим специалисты советуют заряжать АКБ в теплых условиях после его предварительного обогрева.
Также не рекомендуется допускать полной разрядки батарей и нахождения их в этом состоянии длительное время. Исключением являются ситуации, когда аккумулятор искусственно переводится в состояние консервации и заливается на зиму дистиллированным раствором (но и в этом случае нужно подзаряжать его хотя бы раз в месяц).
Расположение АКБ в пределах подкапотного пространства гарантирует удобство его обслуживания, заключающегося в проверке плотности электролитического состава. Для её систематического контроля применяются специальные приборы, называемые ареометрами. С их помощью удаётся измерить плотность электролита при одновременной проверке напряжения АКБ в режиме рабочей нагрузки.
Работа с ареометром
Комплексный поход к измерению основных параметров кислотных батарей позволяет заранее определиться со всеми слабыми местами эксплуатируемого изделия и предпринять какие-то меры по их устранению.
Устройство щелочных батарей аналогично рассмотренным ранее кислотным изделиям. Но их зарядные пластины изготавливаются на основе других химических компонентов, а электролитическим составом служит доведённый до нужной плотности едкий калий.
Ещё одно отличие наблюдается в таких важных деталях, как конструкция корпуса для батарей, расположение выводов клеммных контактов, а также наличие своеобразной «рубашки» вокруг каждой аккумуляторной пластины.
Устройство щелочной батареи
«Отрицательные» пластины такого аккумулятора изготавливаются из кадмия с примесью железа, а положительные полюса – из гидроокиси никеля с добавлением графита, улучшающим электропроводность катода. Между собой такие пластины соединены попарно в банки, которые также объединяются в параллельные блоки.
При зарядке аккумулятора щелочного типа происходят химические превращения, сопровождающиеся выделением большого количества энергии, трансформируемой в электрическую форму.
К достоинствам изделий из класса щелочных следует отнести:
Последнее преимущество можно дополнить тем, что по достижении максимального уровня зарядки и продолжении этого процесса ничего опасного с аккумулятором произойти не может. В этом случае происходит разложение воды на свои естественные компоненты и понижение уровня залитого раствора (электролита), что в принципе не несёт никакой угрозы и компенсируется простой доливкой дистиллированной воды.
Единственный недостаток аккумуляторов этого типа – их сравнительно высокая стоимость.
Подводя итог всему сказанному, отметим, что понимание того, как устроен АКБ, и в чём состоит принцип его работы, позволит пользователю существенно продлить срок эксплуатации этого важного автомобильного атрибута. При таком подходе к использованию АКБ многим любителям удаётся не только сэкономить на его обслуживании, но и получить определённые «дивиденды» в виде безопасной и комфортной езды.
Объединенная группа аккумуляторов называется батареей элементов или просто гальванической батареей. Существуют два основных способа соединения элементов в батареи: последовательное и параллельное соединения.
В рамках данной статьи рассмотрим особенности последовательного и параллельного соединения аккумуляторов. Есть разные ситуации, когда может потребоваться увеличить общую емкость или поднять напряжение, прибегнув к параллельному или последовательному соединению нескольких аккумуляторов в батарею, и всегда нужно помнить о нюансах.
Параллельное соединение предполагает объединение положительных клемм аккумуляторов с общей плюсовой точкой схемы, а всех отрицательных — с общим минусом, т. е. все положительные выводы элементов присоединить к одному общему проводу, а все отрицательные выводы — к другому общему проводу. Концы общих проводов такой батареи присоединяются к внешней цепи — к приемнику.
Сущность последовательного способа соединения аккумуляторов, как это вытекает из самого его названия, заключается в том, что все взятые элементы соединяются между собою в одну последовательную цепочку, т. е. положительный полюс каждого элемента соединяется с отрицательным полюсом каждого последующего элемента.
В результате такого соединения получается одна общая батарея, у которой у одного крайнего элемента остается свободным отрицательный, а у второго — положительный выводы. При помощи их батарея и включается во внешнюю цепь — в приемник. Далее поговорим об этом более подробно.
Параллельное соединение аккумуляторов дает объединение емкостей, и при равном исходном напряжении на каждом из аккумуляторов, входящих в собираемую из них батарею, емкость составной батареи оказывается равной сумме емкостей этих аккумуляторов. При равных емкостях объединяемых аккумуляторов, для нахождения емкости батареи достаточно умножить количество составляющих батарею аккумуляторов на емкость одного аккумулятора в сборке.
Параллельное соединение:
Сколько бы элементов мы ни соединяли параллельно, общее их напряжение всегда будет равно напряжению одного элемента, но зато сила разрядного тока может быть увеличена во столько раз, сколько элементов будет входить в состав батареи, если только все элементы в батарее однотипные.
Соединяя аккумуляторы последовательно, получают батарею той же емкости, что и емкость одного из аккумуляторов, входящих в батарею, при условии, что емкости равны. При этом напряжение батареи будет равно сумме напряжений каждого из составляющих батарею аккумуляторов.
Ежели последовательно соединяются аккумуляторы равной емкости и равного на момент соединения напряжения, тогда напряжение батареи, полученной путем последовательного соединения, будет равно произведению напряжения одного аккумулятора и количества аккумуляторов, составляющих последовательную цепь.
Последовательное соединение:
При последовательном соединении элементов складываются и величины их внутренних сопротивлений. Поэтому от составленной батареи независимо от величины ее напряжения можно потреблять только такой же силы ток, на какой рассчитан один элемент, входящий в состав данной батареи. Это и понятно, так как при последовательном соединении через каждый элемент проходит тот ток, какой проходит и через всю батарею.
Таким образом, путем последовательного соединения элементов, увеличивая их общее количество, можно повысить напряжение батареи до любых пределов, но сила разрядного тока батареи останется такой же, как и у одного отдельного элемента, входящего в ее состав.
И при параллельном, и при последовательном соединении, общая энергия батареи оказывается равной сумме энергий всех аккумуляторов, составляющих батарею.
Итак, для чего же аккумуляторы объединяют в батареи? Все дело в том, что в любой схеме существуют потери, связанные с нагревом проводников. И при одном и том же сопротивлении проводника, если требуется передать определенную мощность, гораздо выгоднее передавать мощность при высоком напряжении, тогда ток потребуется меньший, и омические потери будут меньше.
По этой причине мощные источники бесперебойного питания используют батареи последовательно соединенных аккумуляторов на общее напряжение в несколько десятков вольт, а не параллельную цепь на 12 вольт. Чем выше напряжение источника, тем выше КПД преобразователя.
Когда нужен значительный ток, а одного имеющегося в наличии аккумулятора для поставленной цели не достаточно, увеличивают емкость батареи, прибегая к параллельному соединению нескольких аккумуляторов.
Не всегда экономически выгодно заменять аккумулятор на новый, обладающий большей емкостью, и иногда достаточно присоединить параллельно еще один, и повысить емкость источника до необходимой. Некоторые источники бесперебойного питания имеют отсеки для установки дополнительных аккумуляторов параллельно уже имеющемуся, с целью повысить энергетический ресурс преобразователя.
Что следует учитывать при объединении аккумуляторов в последовательную цепь? Аккумуляторы различной емкости (изготовленные по одной и той же технологии, например свинцово-кислотные) отличаются внутренним сопротивлением. Чем выше емкость, тем меньше внутреннее сопротивление, зависимость здесь почти обратно пропорциональная.
По этой причине, если последовательно соединить аккумуляторы разной емкости, и замкнуть цепь нагрузки или зарядную цепь, то ток по цепи пойдет везде одинаковый, а вот падения напряжений будут разными. И на каком-то из аккумуляторов батареи напряжение при зарядке окажется намного выше номинала, что опасно, а при разрядке — намного ниже нижнего предела, что вредно. Рассмотрим далее пример, покажем, чем это чревато.
Пусть в нашем распоряжении 10 аккумуляторов, номинальное напряжение каждого 12 вольт, 9 из них имеют емкость 20 ампер-часов, а один — 10 ампер-часов. Мы решили соединить их последовательно, и заряжать от зарядного устройства с контролем зарядного тока, выставили ток на 2 ампера. Зарядное устройство настроено так, что прекратит зарядку когда напряжение батареи пересечет отметку в 138 вольт, исходя из среднего значения в 13,8 вольт на каждый аккумулятор последовательной батареи. Что произойдет?
Для каждого аккумулятора производитель предоставляет зарядную характеристику, где можно увидеть, каким током и на протяжении какого времени нужно заряжать аккумулятор.
Очевидно, аккумулятор в 2 раза меньшей емкости при токе в 2 ампера примет столько же энергии, что и аккумуляторы большей емкости, но рост напряжения на нем будет идти примерно втрое быстрее. Так, уже через 3 часа маленький аккумулятор возьмет свое, в то же самое время большие аккумуляторы еще 6 часов должны будут заряжаться.
Но напряжение на маленьком аккумуляторе уже пошло через край, его бы нужно перевести в режим стабилизации напряжения, на наш зарядный прибор этого не делает. В конце концов система рекомбинации газов в аккумуляторе вдвое меньшей емкости не выдержит, клапаны сорвет, и аккумулятор начнет терять влагу, терять емкость, при этом большие аккумуляторы все еще будут недозаряжены.
Вывод: заряжать последовательно можно только аккумуляторы равной емкости, одной и той же технологии, одного и того же состояния разряда.
Теперь допустим, что мы разряжаем эту же последовательную цепь. Изначально на каждом аккумуляторе 13,8 вольт, а разрядный ток составляет 2 ампера. Защита от глубокого разряда разомкнет цепь при 72 вольтах, то есть предполагается не менее 7,2 вольт на аккумулятор. Через 4 часа маленький аккумулятор полностью разрядится, а на больших еще будет по 12 вольт, и защита от глубокого разряда не уследит подвоха. Маленький аккумулятор уже необратимо потеряет часть своей емкости.
Вот почему последовательно можно соединять лишь аккумуляторы равных емкостей, если не хотите их испортить. Лучше всего последовательно соединять аккумуляторы из одной партии, и проверить предварительно их емкости тестером АКБ, дабы убедиться, что емкости аккумуляторов, из которых вы собираетесь собрать последовательную батарею, почти равны.
А вот параллельно соединять аккумуляторы разной емкости допустимо. Разумеется, при условии равенства напряжений на их клеммах. При параллельном соединении емкости аккумуляторов не будут играть роли, поскольку внутренние сопротивления аккумуляторов окажутся подключены параллельно, и максимальный ток заряда или разряда будет у каждого аккумулятора свой, они будут работать синхронно.
Однако для клемм аккумуляторов и для каждого конкретного аккумулятора ограничения по току имеются, клеммы могут и не выдержать длительный ток, который в принципе способен дать аккумулятор, об этом важно не забывать. В технической документации к аккумулятору эти параметры указаны.
Если в момент соединения двух аккумуляторов, сильно различающихся по емкости, их напряжения отличаются значительно, неизбежна кратковременная перегрузка по току одного из аккумуляторов. Если напряжение выше у аккумулятора меньшей емкости, то перераспределение заряда в момент соединения вызовет кратковременный ток короткого замыкания в нем, и может быстро привести к его разрушению.
Если напряжение выше у аккумулятора большей емкости, то опять же под угрозой аккумулятор меньшей емкости, ибо он станет принимать заряд в режиме перегрузки. Поэтому лучше всего соединять параллельно аккумуляторы, предварительно выровняв напряжения на них, а уже следующим шагом объединять в батарею.
Надеемся, что наша статья была для вас полезной, и теперь вы знаете, как можно, а как нельзя соединять аккумуляторы и для каких целей это обычно делают.
Андрей Повный
Помните старую комедию «Берегись автомобиля»? «С плохим аккумулятором – разве это жизнь?» Чтобы аккумулятор вел себя всегда хорошо, держать его все время подключенным к бортовой сети нельзя, нужен периодический подзаряд от автономного зарядного устройства, особенно в зимнее время; почему – см. далее. Сделать зарядное устройство для автомобильного аккумулятора своими руками возможно, владея начальными приемами электромонтажных работ. Обойдется самодельная автозарядка из купленных вразброс комплектующих дешевле фирменной; случай для современной электроники, надо сказать, нетипичный. Это во-первых. Во-вторых, изготовление автозарядки своими руками – хорошая переходная ступень от элементарных электроцепей типа выключатель – лампочка к серьезной электронике. В отличие от «пионерских» поделок на столе оно сразу даст навыки работы с достаточно большими токами и механического оформления конструкции. В настоящем материале рассказывается, как правильно сделать зарядное устройство для автоаккумулятора.
Автозарядка состоит из первичного источника электропитания для собственно зарядного устройства, которое обеспечивает заданный режим заряда аккумуляторной батареи, и схем защиты ее от разного рода нештатных ситуаций. Схемотехнически эти узлы могут быть в той или иной степени объединены. Далее для краткости употребляются след. сокращения:
Свинцово-кислотные аккумуляторы отличаются «дубовостью», эксплуатационной выносливостью, отчего и держатся нерушимо в автотранспорте. Причина – простота электрохимических процессов в свинцово-кислотной АКБ. Для контроля за ее текущим состоянием в большинстве случаев достаточно знать величину напряжения всей батареи без разбивки по банкам. Но перезаряд свинцово-кислотной АКБ может вызвать вскипание электролита в ней. На ходу автомобиля это очень опасно, поэтому в бортсети АКБ хронически недозаряжается. Постоянный недозаряд приводит к преждевременной сульфатации пластин и снижению ресурса АКБ. Ситуация усугубляется в холодное время года, даже если гараж или место стоянки отапливается, т.к. до комнатной температуры их не греют. Если же в перерывах между поездками дозаряжать АКБ по максимуму, сколько она способна принять энергии при данной наружной температуре, то «акумыч» проживет хорошо и долго даже в суровых условиях. Дозаряд АКБ как раз и обеспечивает зарядное устройство для аккумулятора, но это еще не все. Правильно построенное зарядное устройство дает также десульфатирующий эффект. Если зимой ежесуточно на ночь снимать АКБ и ставить на дозаряд, она выдерживает количество циклов заряд-разряд в 1,5-2 раза против прописанного в ТУ в расчете на типовой режим эксплуатации. Также зарядка с десульфатацией иногда способна спасти АКБ, «убитую», напр., при попытках завести машину на холоде. И, наконец, емкость неиспользуемой АКБ за месяц падает на 15-30% вследствие саморазряда. Если же на это время поставить АКБ на содержание под током от зарядки (см. далее), то аккумулятор будет всегда свежим. И, между прочим, постановка неиспользуемой АКБ на содержание также уменьшает сульфатацию пластин.
Свинцовые АКБ заряжают током, равным току их 10-часового разряда: 6 А для АКБ на 60 А/ч, 9 А для 90 А/ч, 12 А для 120 А/ч. Больший ток вызовет перегрев и, возможно, вскипание электролита, отчего ресурс батареи резко снижается вплоть до полной негодности. Меньший зарядный ток ресурс АКБ практически не увеличивает, но удлиняет время заряда.
Зарядный ток в АКБ течет обратно рабочему. Важнейшее условие при этом – напряжение на АКБ не должно превысить 2,7 В на банку (8,1 В для 6 В АКБ, 16,2 В для 12 В АКБ, 27 В для 24 В АКБ), иначе начнется химическое разложение электролита, пластин, и АКБ закипит даже при небольшом зарядном токе. Чтобы полностью исключить закипание, допустимое напряжение заряда ограничивают 2,6 В на банку (7,8 В, 15,6 В, 26 В соотв.); при этом недозаряд по энергии составит менее 5% и усиления сульфатации не будет.
Если отключить полностью заряженную АКБ от ЗУ, дать ей остыть и померить напряжение без нагрузки, увидим 2,4 В на банку (6,8 В, 14,4 В, 24 В). В работе при разряде напряжение АКБ плавно падает до 1,8 В на банку (5,4 В, 10,8 В, 21,6 В), после чего батарея считается полностью разряженной. На самом деле в ней остается ок. 25% «закачанной» при заряде энергии, и способы «высосать» ее в экстренной ситуации до последнего эрга есть, но АКБ после этого придется сдать на утилизацию. Выбрасывать нельзя, там свинец.
Температурная зависимость напряжения полностью заряженной АКБ существенна. Если дать заряд на АКБ, еще не остывшую от экстратока разряда (стартер в момент пуска берет до 600 А, а крутящий до 75 А), то напряжение на ней может резко прыгнуть, т.к. отклик свинцового аккумулятора током потребления на скачок приложенного напряжения сильно, по меркам электроники, затянут, до десятков мс. Получим саморазогрев и вскипание электролита на борту. Поэтому в бортсети машины напряжение на АКБ ограничивают 2,35 В на банку (7,05 В, 14,1 В, 23,5 В), что и вызывает хронический недозаряд.
При заряде от внешнего ЗУ напряжение на АКБ ограничивают величиной 2,4 В на банку (6,8 В, 14,4 В, 24 В), т.к. «наливать энергии по горлышко», до 2,6 В на банку, рискованно – АКБ при заряде греется и может уйти в саморазогрев. Полностью АКБ дозаряжают и предохраняют от саморазряда т. наз. током содержания, равным 0,5-1 тока 100-часового разряда (0,3-0,6 А, 0,45-0,9 А и 0,6-1,2 А для АКБ на 60 А/ч, 90 А/ч и 120 А/ч соотв.); напряжение на батарее при этом не должно превысить 2,6 В на банку. Практически для этого в ЗУ ставят защиту от перенапряжения на 15,6 В для 12 В АКБ, 7,8 В и 26 В для 6 В и 24 В АКБ. Если она сработала, АКБ приняла энергии, сколько может, и дальше ее заряжать нельзя.
Исходя из условий эксплуатации индивидуального автотранспорта и указанных условий режима заряда АКБ, требования к ЗУ для автоаккумулятора вырисовываются такие:
В случае переполюсовки АКБ возможны 2 случая: АКБ исправна недозаряжена либо глубоко разряжена и/или «доходная», истощенная, в значительной степени выработавшая ресурс, или же на заряд неправильно подключают полностью заряженную батарею. В первом случае (исправна недозаряжена) ток заряда увеличивается сверх номинального. Во втором перед этим на короткое время «прыгнет» напряжение АКБ сверх заданного ИП, а потом сразу «шарахнет» экстраток и АКБ вскипит. В последней ситуации, чтобы спасти АКБ от непоправимой порчи, ее нужно успеть отключить по перенапряжению.
Поговорим вначале и типичных ошибках конструирования самодельных ЗУ для свинцовых АКБ. Первую иллюстрируют поз. вверху. Подключение непосредственно к бытовой электросети (слева) обсуждения не стоит. Это не ошибка, это грубейшее и опасное нарушение ПТБ. Ошибка – в ограничении тока заряда емкостным балластом. Дорогой, кстати, это способ по сегодняшним меркам: одна только батарея масляно-бумажных конденсаторов на 32 мкФ 350 В (на меньшее напряжение нельзя) стоит больше, чем хорошая фирменная зарядка.
Неправильно и нерационально построенные схемы зарядных устройств для автомобильных аккумуляторов
Но главное – в сети появляется реактивная нагрузка. Если в вашем электросчетчике есть индикатор реактивности (светодиод «Возврат»), то при включении этих зарядок в сеть он вспыхнет. Управление современным электрохозяйством невозможно без компьютеров, а «обратка» сбивает электронику с толку даже до отключений по ложной аварии. Поэтому теперешние электрики к реактивке беспощадны. Ну, а вдруг обнаружится, что ее источник неграмотный или излишне хитроумный потребитель, то… не будем на ночь глядя.
Схема внизу, если на считать того же емкостного балласта, разработана квалифицированно, это ЗУ защитит АКБ, образно говоря, и от Тунгусского метеорита; (с подробным ее описанием можно познакомиться здесь: http://ydoma.info/avtomobil-zaryadnoe-ustrojstvo-dlya-avtomobilnogo-akkumulyatora.html). Но, при всем уважении к безусловно знающему свое дело автору, строить так сложно (и дорого) ЗУ для свинцовых АКБ все равно что назначать командовать взводом опытных закаленных солдат нянечку из детсадика. Свинцовому аккумулятору для хорошей жизни нужно немногое. Чем мы далее и займемся.
УЗ для АКБ что броня для танка, так что с него и начнем. УЗ для самодельного ЗУ АКБ желательно делать, разумеется, попроще. Далее, УЗ также желательно строить автономным, чтобы через него можно было подключать АКБ к любому ЗУ, схема которого вам приглянется, или которое у вас уже есть. И последнее, УЗ должно срабатывать как можно четче и быстрее, для возможности использования его в схемах заряда современных аккумуляторов с герметичными банками.
Малоэффективные схемы защиты автоаккумуляторов
Простейшая защита от переполюсовки диодами Шоттки (слева на рис.) не спасет от экстратока перезаряда или при неправильном подключении исправной недозаряженной АКБ. Разве что путем сгорания недешевой диодной сборки. Если аккумулятор «новый, хороший», то, пока руки не дойдут до «нового, хорошего» ЗУ, может выручить интегрированная защита по схеме справа; ее можно встроить в уже имеющийся самодельный лабораторный ИП.
В данной схеме используются медленный отклик АКБ на скачок напряжения и гистерезис реле: их ток (и напряжение) отпускания в 2,5-4 раза меньше тока/напряжения срабатывания. Любое ЗУ АКБ включают только с подключенной АКБ. Реле – переменного тока на напряжение срабатывания 24 В и ток через контакты от 6 (9, 12) А. При включении ЗУ реле срабатывает, контакты его замыкаются, пошел заряд. Напряжение на выходе трансформатора падает ниже 24 В, но на выходе ЗУ остается 14,4 В, выставленных заранее под нагрузкой R3 в схеме стабилизации напряжения. Реле пока держит, но, вдруг пошел экстраток, первичное напряжение просядет больше, реле отпустит и цепь заряда разорвется.
Недостатки у этого ЗУ серьезные. Во-первых, нет защиты от скачка напряжения по выходу от переполюсовки истощенной АКБ. Во-вторых, нет самоблокировки: от экстратока реле будет хлопать и хлопать, пока контакты не обгорят. В-третьих, нечеткое срабатывание: любое реле по недонапряжению на обмотке отпускает с дребезгом контактов. Поэтому пытаться ввести в эту схему регулировку тока срабатывания бессмысленно. И, наконец, реле и трансформатор Т1 должны быть подобраны друг к другу, т.е. повторяемость данного устройства близка к нулевой.
Схема УЗ, полностью соответствующая указанным выше требованиям, дана на рис.:
Простая схема защиты аккумулятора автомобиля от перезаряда, перенапряжения и переполюсовки
Ток заряда течет через нормально замкнутые контакты реле K1, что намного уменьшает вероятность их обгорания. Обмотка K1 подключена по логической схеме диодного «или» к модулю защиты от экстратока (R1, VT1, VD1), модулю защиты от перенапряжения (R2, R3, R4, VT2, VD2) и цепи самоблокировки K1.2, VD3; порог срабатывания K1 по перенапряжению устанавливается R3. Недостаток у этого УЗ всего один, его нужно налаживать с использованием балластной нагрузки и мультиметра:
Примечание: чтобы не резать много раз нихром для R1 – его удельное сопротивление 1 Ом*м/кв. мм. Т.е., 1 м нихромовой проволоки сечением 1 кв. мм имеет сопротивление 1 Ом.
В наши дни компьютерный импульсный блок питания (ИБП) может оказаться доступнее трансформатора на железе; вдруг он просто в хламе валяется. ИБП часто переделывают в лабораторные БП, но, вообще говоря, это плохой вариант. Выходное напряжение по каналу +12 В удается задрать максимум до 16-17 В, чего для конструкторско-исследовательских целей маловато. А уровень импульсных помех на выходе тогда, мягко говоря, великоват. Как налаживать УМЗЧ с собственными шумами в –66 дБ (что еще очень скромненько), если по питанию «шерсти прет» на –44 дБ или хуже того? Но вот зарядка для аккумулятора автомобиля на 60 А/ч из ИБП получается отличная, и отдельную защиту городить не надо, все уже есть. Переделывают ИБП в авто ЗУ в целом след. образом:
Примечание: подробно два варианта переделки ИБП в ЗУ АКБ можете посмотреть на видео ниже.
Если лишнего ИБП под рукой нет, то для ИП ЗУ нужно искать трансформатор на железе, его собственная постоянная времени (электрическая инерция) больше таковой АКБ, что очень хорошо по безопасности пользования. «Лепить» самодельный ИБП ни в коем случае не надо, его постоянная времени по выходу на 2 порядка меньше, чем у АКБ. Самодельный ИБП для ЗУ без сложных встроенных схем защиты способен стать причиной разного рода нештатных ситуаций. Помните – кипение электролита это туман и брызги крепкой ядовитой кислоты! А если АКБ с герметичными банками, то возможен и ее взрыв!
ИП ЗУ состоит из понижающего трансформатора и выпрямителя. Сглаживающий фильтр для зарядки АКБ не нужен. Трансформатор ИП ЗУ рекомендуют искать силовой с накальными обмотками от старых ламповых телевизоров – ТС-130, ТС-180, ТС-220, ТС-270. По мощности они годятся с избытком, но, во-первых, от влаги никак не защищены, в гараже могут и не перезимовать. Во-вторых, специалисты по вторичным металлам прекрасно знают, сколько выручки дает ТС, и найти их становится все труднее.
Понижающие трансформаторы типов ТП и ТПП
Если нет желания и/или возможности рассчитать и намотать трансформатор самому, для ИП ЗУ лучше будет купить трансформатор ТП или ТПП, они дешевле, чем ИБП б/у. Мощность – от 50 Вт, ее указывают последние 2 цифры в обозначении типономинала, напр. ТПП 36-220-80. 3 цифры в середине – рабочее напряжение первичной обмотки, а первые 2 или 3 кодируют количество и напряжение вторичных обмоток, оно 6,3 или 12,6 В на обмотку. Предпочтение следует отдавать трансформаторам в паровлагозащищенном исполнении («зеленым», слева на рис.), они способны неограниченно долгое время работать в атмосфере с влажностью 100% и примесями химически агрессивных паров. Трансформатор с обмотками на каркасе из плавкого пластика (справа) – вариант на самый крайний случай. Такие не рассчитаны на эксплуатацию в условиях ЗУ: работу свыше 50% времени использования на полной мощности с систематическими перегрузками по току. Вдруг берете такой, его мощность нужна от 120 Вт.
Примечание: ТП и ТПП лучше брать на одно первичное напряжение 220 В, такие при прочих равных условиях на 10-15% дешевле.
Типовые схемы соединения обмоток ТП и ТПП на 12,6 В под выпрямление мостом или двухполупериодное со средней точкой даны на рис. слева и справа:
Схемы соединения обмоток типовых трансформаторов питания
У конкретного экземпляра они могут отличаться, т.к. производители вправе произвольно менять разводку выводов по ТУ заказчика. Остатки идут в продажу, а выпуск особо популярного типономинала может быть продолжен для рынка. Поэтому, приобретая ТП или ТПП, сверяйтесь со спецификацией к нему; если ее нет, придется вызванивать обмотки. Общие правила разводки выводов и соединения обмоток ТП/ТПП такие:
Примечание: выводы экранов (15 и 16) можно комбинировать как угодно, т.к. межобмоточные экраны не являются короткозамкнутыми витками.
Вариант подешевле – присмотреть на железном базаре старый накальный трансформатор ТН; система обозначений аналогична ТП/ТПП. «Кладоискатели» до ТНов не охочи: возни с разборкой много, медяшки мало. Типовая схема включения ТН для ЗУ дана на врезке в центре рис. Переключать, для повышения выходного напряжения, нижний по схеме диод с вывода 15 на 16 нельзя, нарушится симметрия обмоток!
Выходные напряжения на схемах выше даны для входного (сетевого) 220 В. Если оно упадет, пойдет недозаряд. Вместе с тем, поскольку АКБ на заряд от внешнего ЗУ ставят холодной, остается некоторый запас на увеличение напряжения заряда; его возможно использовать полностью, если ЗУ с защитой. В таком случае выпрямитель нужно делать со средней точкой на сборке диодов Шоттки – выходное напряжение увеличится прим. на 0,6 В.
Современные диоды Шоттки с платиновым барьером для использования в ЗУ АКБ вполне пригодны, см. спецификацию на рис.:
Спецификация на сборку диодов Шоттки для выпрямителя зарядного устройства автоаккумулятора
Кроме того, на сборку из пары диодов Шоттки нужен радиатор от 50 кв. см, а каждому обычному, с p-n переходом, на ток до 10 А – от 100 кв. см. Брать сборки Шоттки нужно с максимальным обратным напряжением от 35 В и пиковым прямым током от 30 А, т.к. в схеме выпрямителя со средней точкой соотв. величины достигают 1,7 амплитудного значения напряжения вторичной обмотки и 2,4 выпрямленного тока (31 В и 24 А при 12,6 В и 10 А; начальный пиковый ток заряда полностью разряженной АКБ на 60 А/ч – 10 А).
Область применения управляемых тиристорных выпрямителей ограничена из-за создаваемых ими больших коммутационных помех на выпрямленном напряжении. Но в ЗУ эти помехи не помеха, АКБ погасит. Зато по прочим свойствам тиристорные выпрямители для заряда АКБ не просто подходят, но подходят идеально.
Дело в том, что после тиристорного выпрямления без сглаживания зарядный ток на АКБ подается короткими импульсами с обрезанным фронтом увеличенной (но не чрезмерно) амплитуды. Как следствие, зарядка для авто аккумулятора с тиристорным выпрямителем дает десульфатирующий эффект без каких-либо дополнительных премудростей. И, что тоже важно, вероятность ухода АКБ в саморазогрев при заряде от тиристорного ЗУ на порядок меньше: ненужная электрохимия успевает рассосаться в промежутках между импульсами. Еще плюс такой же, как у диодов Шоттки: радиатор для пары тиристоров нужен той же площади, что для сборки Шоттки.
Простоты ради тиристорные ЗУ часто строят по схеме однополупериодного выпрямления, см. рис.:
Тиристорные зарядные устройства для автоаккумуляторов с однополупериодным выпрямлением
Нижняя схема самая дешевая, т.к. для управления силовым тиристором вместо маломощного тиристора используется его аналог на транзисторах, он вдвое-втрое дешевле. Схема справа вверху самая дорогая из-за совсем недешевого промышленного тиристора Т122-25, к которому нужен еще и антишумовой фильтр C1T1C2. В остальном эти ЗУ равноценны.
Недостаток у однополупериодных тиристорных ЗУ один, но фатальный – то самое однополупериодное выпрямление. Половина первичных полуволн тока пропадает. Чтобы не затягивать заряд вдвое, приходится соотв. увеличивать амплитуду зарядного импульса. Она выходит за допустимые пределы, и преимущества тиристорного выпрямления сводятся на нет. Наоборот, однополупериодное тиристорное ЗУ опаснее для АКБ, чем диодное.
Схемы ЗУ для автоаккумуляторов с двухполупериодным тиристорным выпрямлением сохраняют все его достоинства и лишены указанного выше недостатка. Но подход к построению тиристорного выпрямителя нужен соответственный. Напр., схема слева на рис. – типично любительская. Выпрямитель сделан аналогично диодному мосту, что вдвое увеличивает падение напряжения на нем и требует пары совсем ненужных довольно дорогих компонент. Коммутационные помехи от такого ЗУ сильные, и нужно мотать нетиповой трансформатор.
Схемы тиристорных зарядных устройств для автоаккумуляторов с двухполупериодным выпрямлением
Близка к оптимальной для тиристорных схема известной автозарядки Amperus, справа на рис. Ее авторы позаботились и о хорошей антишумовой развязке цепей управления, что позволяет использовать Amperus в квартире. Единственный небольшой недостаток – ток и напряжение заряда взаимозависимы, т.к. выставляются совместно резистором на 1 кОм. Поэтому использовать Amperus желательно с УЗ (см. выше).
Очень хорошее простое и недорогое зарядное устройство для аккумулятора автомобиля может быть построено на основе универсального преобразователя DC/DC TC43200; он представляет собой импульсный тиристорный преобразователь напряжения с раздельными независимыми регулировками ограничения по току и величине стабилизированного выходного напряжения, слева на рис. TC43200 можно купить на том же Али Экспресс, а по расходам сравнительно со схемами на россыпи – отдельных дискретных компонентах, и радиаторами к ним, для ЗУ на TC43200 там же можно приобрести универсальный указатель тока/напряжения (в центре) и не требующий радиатора диодный мост на 10 А, напр. KBPC5010. Все вместе выйдет дешевле.
Простое недорогое зарядное устройство для аккумулятора автомобиля на преобразователе напряжения TC43200
Схема ЗУ АКБ на TC43200 дана справа. Входное напряжение – от 18 В; емкость C1 достаточна 220 мкФ. Налаживание предельно простое:
Недостатки TC43200 невелики и легко устранимы – радиаторы маловаты, а встроенной аварийной защиты нет. Длительной работы в режиме КЗ TC43200 не выдержит и АКБ от вскипания не спасет. Поэтому ЗУ на TC43200 требуется отдельное защитное устройство наподобие описанного выше.
"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453