Современное чудо инженерной мысли – автомобиль, очень сложно представить себе без обилия электронных систем. Электронные системы по своей функциональности можно разделить на следующие системы управления: двигателем, ходовой частью и трансмиссией и салоном (безопасность и комфорт). Вот именно об одной из таких систем, которая контролирует работу системы впрыска топлива, по сути движения автомобиля. Это датчик положения коленчатого вала.
Датчик коленвала в разных источниках (книгах, инструкциях, описаниях или каталогах) может иметь несколько равноправных наименований. ДПКВ – датчик положения коленчатого вала, датчик синхронизации. Чуть реже встречается название «датчик ВМТ».
Датчик оборотов коленвала, без оговорок можно назвать единственным датчиком, неисправность которого приводит к остановке двигателя.
Почему так? Дело в том, что датчик коленвала, задача которого выполнять синхронизацию работы топливных форсунок или системы зажигания. То есть сбой в его работе приводит к сбою, соответственно системы впрыска топлива.
Датчик коленчатого вала в процессе работы подаёт сигналы (сообщает) ЭБУ о положении коленвала, частоте и направлении вращения коленвала. Принцип работы датчика коленвала может отличаться в зависимости от типа применяемого датчика на конкретной модели автомобиля.
Электронный блок управления (ЭБУ), принимая сигналы, которые генерирует датчик частоты вращения коленчатого вала, определяет: положение коленвала относительно верхней мёртвой точки (ВМТ) в 1 и 4 цилиндрах двигателя, частоту вращения коленвала и направление его вращения.
Благодаря полученным результатам ЭБУ создаёт сигналы для управления: форсунками, моментом зажигания, включением (выключением) электробензонасоса, работой тахометра (показаниями).
Датчик синхронизации имеет такой же корпус, как и другие датчики, например, датчик распредвала. А отличает его от других датчиков длинный провод с разъёмом, которым он подключается к бортовой цепи.
Место расположения датчика коленвала является очень неудобным по расположению, именно поэтому к нему подключён длинный (до 70 см.) провод с разъёмом. Датчик крепится на кронштейне вблизи шкива привода генератора.
При установке датчика коленвала выставляется зазор между самим датчиком и зубчатым шкивом. Правильным считается положение датчика, когда зазор между его сердечником и диском синхронизации составляет 0,5-1,5 мм. расстояние зазора регулируется при помощи шайб (прокладок) между посадочным гнездом датчика и самим датчиком.
В процессе эксплуатации, могут наблюдаться неисправности датчика оборотов коленвала, хотя это довольно редкое явление. При неисправности датчика, шкива привода генератора, загорается сигнал «CHECK ENGINE». В буфере ошибок контроллера могут появится либо код 35 либо 19.
Проверка исправности датчика положения коленвала производится при помощи тестера. Просто измеряется сопротивление обмотки датчика омметром. Сопротивление должно находиться в пределах 800-900 ом.
Механические повреждения датчика могут происходить при выполнении каких-либо ремонтных работ в подкапотном пространстве, либо если между датчиком и зубьями шкива попадают посторонние предметы.
А вообще-то, умудрённые опытом автомобилисты рекомендуют всегда иметь в багажнике запасной датчик оборотов коленвала. Стоимость его невелика, а значение для работы двигателя, просто неоценимо.
Удачи вам при эксплуатации авто с исправным датчиком синхронизации.
Современная автоматическая трансмиссия является сложным агрегатом. В зависимости от типа, коробка-автомат является целым комплексом электронных, механических и гидравлических узлов и компонентов.
Что касается управления, ЭБУ АКПП контролирует работу трансмиссии, получая сигналы от многочисленных датчиков коробки — автомат и ЭСУД, а также формирует управляющие сигналы в соответствии с прописанным в память блока алгоритмами.
В этой статье мы поговорим о том, что такое датчик входной скорости АКПП, какие неисправности возникают с указанным элементом, а также как диагностировать проблемы, причиной которых может оказаться датчик вращения АКПП.
Среди различных датчиков, которые тесно взаимодействуют с ЭБУ коробкой автомат и могут быть причиной неисправностей, следует отдельно выделить датчик входного и датчик выходного вала АКПП.
Если говорит о датчике входной скорости АКПП, его задачей является диагностика неполадок, управление моментами переключения передач, регулировка рабочего давления, а также выполнение блокировки гидротрансформатора (ГДТ).
В двух словах, датчик передает на блок управления показания (сигналы постоянного или переменного тока). Сам сигнал напряжения этого датчика является пропорциональным частоте вращения входного вала коробки.Признаками того, что датчик входной скорости АКПП вышел из строя или работает некорректно, является заметное ухудшение динамики автомобиля, плохой и слабый разгон, загорание «чека» на панели приборов или переход коробки автомат в аварийный режим.
В такой ситуации многие водители считают, что причиной является низкое качество топлива, неисправности системы питания двигателя или загрязнение трансмиссионного масла.
При этом следует учитывать, что вместо чистки инжектора или замены масла в коробке автомат может быть необходима углубленная диагностика АКПП или проверка датчика частоты вращения входного вала коробки.
Зачастую датчик выходит из строя не сразу, а постепенно. Другими словами, периодически может моргать лампа HOLD или A/T, причем если остановить автомобиль, перевести коробку из режима «D» в «N», заглушить и завести двигатель, проблема может исчезнуть на какое-то время. Во время диагностики определяется ошибка P0715 (неисправность в цепи датчика частоты вращения входного вала КПП).Если же аварийная лампа горит/моргает постоянно, коробка упала в аварию (включается только 3-я передача, переключения жесткие, заметны рывки, толчки, машина не разгоняется), тогда нужно проверить датчик входного вала.
Указанная проверка зачастую позволяет быстро определить проблему, особенно если она связана с работой датчика частоты вращения вала АКПП. Кстати, в большинстве случаев некорректно работающий датчик входной скорости АКПП нужно менять на новый или заведомо исправный.
Рекомендуем также прочитать статью о том, что такое блок управления АКПП. Из этой статьи вы узнаете об устройстве ЭБУ АКПП, принципах его работы и частых неисправностях, а также о способах диагностики и ремонта ЭБУ автоматической коробкой передач.Как правило, хотя датчик является надежным и достаточно простым электронным устройством, в процессе эксплуатации могут возникать неполадки. Неисправности в этом случае обычно сводятся к следующим:
Затем нужно снять датчик и проверит его при помощи мультиметра, сравнив показания с теми, которые указаны в мануале. Если заметны отклонения от нормы, выполняется замена или ремонт датчика входного вала АКПП.
Как видно, датчик частоты вращения вала АКПП является простым элементом, при этом от его исправности напрямую зависит качество работы коробки автомат в целом. Если заметны какие-либо сбои и отклонения от нормы (машина плохо разгоняется, загорается «чек», моргает индикатор HOLD, передачи переключаются жестко и грубо, момент переключений сдвинут, наблюдаются запаздывания и т.д.), тогда в рамках проведения комплексной диагностики АКПП не следует исключать возможные неисправности датчика частоты вращения входного вала коробки автомат.
Рекомендуем также прочитать статью о том, какие существуют датчики АКПП. Из этой статьи вы узнаете об основных датчиках, которые используются в устройстве коробки — автомат. Напоследок отметим, что указанная деталь для большинства автомобилей с автоматической коробкой передач не отличается высокой стоимостью. Другими словами, если точно установлено, что неисправен именно указанный выше датчик, тогда оптимально провести его замену на новый вместо попыток кустарного ремонта.При этом сама замена может быть произведена своими силами в условиях гаража. Главное, отдельно изучить по мануалу всю необходимую информацию касательно места установки, особенностей снятия и последующего монтажа датчика входного вала АКПП.
Применения
Датчики частоты вращения двигателя используются в системах управления двигателем для:
Число оборотов рассчитывается по интервалу между сигналами датчика скорости вращения.
Рис. Индуктивный датчик скорости вращения (конструкция):
Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту.
Рис. Сигнал индуктивного датчика скорости вращения двигателя:
Активные датчики скорости вращения работают по магнитостатическому принципу. Амплитуда выходного сигнала не зависит от числа оборотов. Благодаря этому можно измерять скорость вращения и при очень низком числе оборотов (квазистатическое определение числа оборотов).
На проводящей ток пластинке, по которой вертикально проходит магнитная индукция В, поперечно к направлению тока можно снимать напряжение UH (напряжение Холла), пропорциональное направлению тока.
Рис. Принцип работы дифференциального датчика Холла:
В дифференциальном датчике Холла магнитное поле вырабатывается постоянным магнитом (поз. 1). Между магнитом и импульсным кольцом (4) находятся два сенсорных элемента Холла (2 и 3). Магнитный поток, который проходит сквозь них, зависит от того, находится ли датчик скорости вращения напротив зубца или паза. Благодаря созданию разности сигналов от обоих датчиков достигается снижение магнитных сигналов возмущения и улучшенное соотношение сигнала/ шума. Боковые поверхности сигнала датчика могут обрабатываться без оцифровывания непосредственно в блоке управления.
Вместо ферромагнитного зубчатого колеса используются также многополюсные колеса. Здесь на немагнитном металлическом носителе установлен намагничивающийся пластик, который попеременно намагничивается. Эти северные и южные полюсы принимают на себя функцию зубцов колеса.
Рис. Принцип определения числа оборотов с помощью датчика AMP:
Электрическое сопротивление магнито-резистивного материала (AMP, анизотропный магниторезистивный) является анизотропным. Это означает, что оно зависит от направления магнитного поля, которое на него воздействует. Это свойство используется в AMP-датчике. Датчик находится между магнитом и импульсным кольцом. Линии поля изменяют свое направление, когда вращается импульсное (активное) колесо. В результате формируется синусоидальное напряжение, которое усиливается в схеме обработки данных и преобразуется в сигнал прямоугольной формы.
Усовершенствование активных датчиков скорости вращения отражено в использовании технологии GMR (ГМР) (Giant Magneto-Resistance). По причине высокой чувствительности по сравнению с датчиками AMP здесь возможны большие воздушные зазоры, за счет чего предполагаются использования в трудных сферах применения. Более высокая чувствительность производит меньше шумов фронта сигнала.
В ГМР-датчиках возможны также все двухпроводные порты, используемые ранее в датчиках скорости вращения Холла.
Датчик ( сенсор, преобразователь ) позволяет получать, обрабатывать и предавать информацию о состоянии объекта. Это автономная система, содержащая преобразователь вида энергии и находящаяся в контролируемой зоне. Элемент преобразующий контролируемую величину ( температуру, давление, обороты, скорость, движение и т.д. ) в сигнал, удобный для измерения и обработки. В зависимости от области применения, сенсоры могут быть контактными и бесконтактными. Широко применяются в автоматизированных системах управления.
Рассмотрим некоторые варианты применения сенсоров:
Датчик вращения, схема которого приведена на Рис 1, может быть применён там, где необходим контроль вращения: эл. двигателя, маховика, вентилятора, вала, всего, что крутится. Основной принцип работы данной схемы состоит в том, чтобы периодически прерывать (затенять) поток инфракрасного излучения исходящего от излучателя Д1 к приёмнику Д2. Для этого к вращающемуся элементу системы достаточно приделать небольшую пластину, которая периодически проходила бы между излучателем и приёмником, или для большей надёжности установить диск с несколькими отверстиями как показано на рисунке.
Схема работает следующим образом. При пуске электродвигателя датчик вращения, фиксирующий вращение подаёт импульсные сигналы на вход микросхемы. При непрерывном поступлении импульсов от датчика вращения в цепь, конденсаторы С3 и С4 будут постоянно разряжены, создавая на входах микросхемы Д 1/4 и Д 1/1 нулевые сигналы. На выходах 11 и 3 микросхемы установятся логические единицы, которые открыв транзистор Т3 закроют транзистор Т4. Реле К будет обесточено. При аварии подача импульсов прекращается, нули на выходе микросхемы закрывают транзистор Т3 и открывают транзистор Т4, который включает реле, а оно либо блокирует схему, либо включает аварию.
В качестве чувствительного элемента схемы, использован ИК излучатель в паре с фотодиодом ФД – 25 Рис — 1.
На Рис – 2 изображена принципиальная схема, а печатная плата показана на Рис – 3
На Рис – 2 изображена принципиальная схема, а печатная плата показана на Рис – 3
Данная схема датчика вращения, установленная мною на швейные машинки с программным управлением, несколько лет успешно фиксирует обрыв нитки.
В более массивных системах можно применить бесконтактные сенсоры (выключатели) БВК, БТП, КВП любой серии Рис — 4.
Метки: давление, температура
"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453