Детонация двигателя - это процесс самопроизвольного воспламенения горючей смеси в цилиндрах, носящий характер взрывной волны. Чаще детонации подвержены бензиновые двигатели, в которых рабочая смесь воспламеняется принудительно, но иногда явления детонации проявляются и у дизелей.
Попробуем разобраться в физической природе детонации и причинах, вызывающих ее, пристальнее рассмотрев процесс сгорания топлива в цилиндрах двигателя. Попавшая в цилиндр двигателя во время такта впуска горючая смесь перемешивается с остатками отработавших газов, образуя рабочую смесь, и начинает быстро сжиматься в процессе такта сжатия. На подходе поршня к верхней мертвой точке рабочая смесь сильно разогревается за счет сжатия и контакта с горячими деталями кривошипно-шатунного механизма, после чего в требуемый момент цикла воспламеняется искрой зажигания.
Горение распространяется по объему камеры сгорания лавинообразно, увеличивая давление в цилиндре, толкая поршень и совершая, таким образом, полезную работу.
Таков механизм протекания нормального процесса горения. Но иногда он может нарушаться.Ничего в природе не происходит в единый миг, и рабочая смесь тоже воспламеняется не одновременно по всему объему камеры сгорания, - горение начинается у места запала смеси искрой, в центральной части камеры, а затем быстро распространяется к периферии. По мере роста очага возгорания создается так называемый фронт горения (или фронт пламени), на границе которого образуется зона повышенного давления и температуры.
Часть рабочей смеси, до которой фронт пламени доходит в последнюю очередь, нагревается дополнительно в результате прироста давления со стороны фронта пламени. Тем не менее, при достижении температуры самовоспламенения очаги горения в этих зонах, чаще всего, не возникают из-за местного недостатка кислорода и относительно большого времени протекания первой стадии сгорания, что характерно для периферийных зон.
Однако несгоревшая смесь в этих зонах чрезвычайно активизируется и оказывается на границе теплового взрыва. Из-за высокого давления и больших температур несгоревшая горючая смесь образует очень активные химические соединения - альдегиды, спирты, перекиси и т. д. При достижении критических значений температуры и давления между соединениями возникают цепные окислительные реакции, приводящие к самопроизвольному воспламенению смеси, и сопровождающиеся мощным выбросом энергии взрывного характера. В эпицентре такого мини-взрыва образуется взрывная волна, которой распространяется по цилиндру с невероятной скоростью.
Ударные волны со стороны таких очагов самовоспламенения вызывают, в свою очередь, самовоспламенение хорошо подготовленной к этому смеси. Это вызывает еще большее повышение давления, под действием которого фронт пламени принудительно ускоряется. Скорость его может превысить скорость звука и достичь 1500…2300 м/с, что характерно для взрывного горения. Для примера - при нормальном горении скорость фронта пламени составляет всего 20…30 м/с. От разрыва поршень и стенки цилиндра спасает лишь то, что детонация вызывается микровзрывами, которые выбрасывают недостаточную для глобальных разрушений энергию.
Сгорание в цилиндрах двигателя с искровым зажиганием последних порций заряда после его объемного самовоспламенения, сопровождающееся возникновением ударных волн, называется детонационным. При отражении ударных волн от стенок камеры сгорания возникает звонкий металлический стук, который является внешним проявлением детонации.
***
Заблуждением является мнение, будто прирост давления за счет увеличения скорости распространения фронта пламени позитивно влияет на динамику двигателя и обеспечивает прибавку его мощности. Это не так, поскольку взрывная волна распространяется очень быстро (иногда – более 2 км/с), вызывая настолько сильный прирост давления (до 700 Н/см2), что поршень, головка блока и другие детали КШМ испытывают настоящий удар, словно по ним ударяют увесистой кувалдой. Очевидно, что положительно повлиять на мощность двигателя за такой короткий промежуток времени взрывная волна просто не успевает.
Поэтому микровзрывы в цилиндре приносят только вред - ударяя с невероятной скоростью в стенки цилиндров, взрывная волна разрушает масляную пленку, вызывая интенсивный износ деталей поршневой группы из-за сухого трения, а дополнительный прирост температуры на фронте волны приводит к перегреву стенок цилиндров, поршней, клапанов и головки блока.
Высокая температура разрушает детали двигателя, приводя к обгоранию кромок поршней и клапанов, электродов свечей зажигания, прокладки головки блока цилиндров. Кроме этого нередко имеют место механические разрушения деталей кривошипно-шатунного механизма и даже выкрашивание антифрикционного состава в подшипниках коленчатого вала. Попробуйте узнать в приведенном на рисунке бесформенном куске металла поршень. Он разрушен последствиями детонационного сгорания топлива.
Заметно снижается динамика двигателя - при сильной детонации его мощность падает, растет расход топлива, в отработавших газах появляется черный дым.
Таким образом, детонационное сгорание отрицательно влияет на рабочий процесс и долговечность деталей КШМ.
***
Возникновению детонации способствуют следующие факторы:
Сорт топливаСорта топлива характеризуются октановым числом, которым оценивается антидетонационная стойкость бензина. Чем выше октановое число, тем выше антидетонационные свойства топлива. Октановое число легких фракций бензина меньше, чем у средних и тяжелых фракций. При быстром открытии дроссельной заслонки (например, при интенсивном разгоне) тяжелые фракции поступают в цилиндр с некоторой задержкой, что стимулирует детонацию в начале разгона из-за временного снижения октанового числа топлива, поступившего в цилиндр. Октановое число автомобильных бензинов в соответствии с ГОСТ 2084-77 составляет от 76 до 98 единиц.
Частота вращения коленчатого валаУвеличение частоты вращения коленчатого вала приводит к росту турбулизации заряда, что влечет за собой увеличение скорости распространения пламени. В результате времени на развитие предпламеных процессов в последних частях заряда становится недостаточно, и детонация снижается. Кроме того, с увеличением частоты вращения коленчатого вала увеличивается содержание остаточных газов в рабочей смеси, что также снижает интенсивность предпламенных процессов и приводит к снижению детонации.
НагрузкаУменьшение нагрузки сопровождается прикрытием дроссельной заслонки карбюратора, вследствие чего давление и температура заряда в конце процесса сжатия снижается, а коэффициент остаточных газов γr увеличивается. Кроме того, уменьшается количество поступающей в цилиндр горючей смеси, а значит и выделяемая в результате ее сгорания теплота, вследствие чего снижается давление в камере сгорания. По этим причинам уменьшение нагрузки приводит к снижению детонации и наоборот.
Угол опережения зажиганияУвеличение угла опережения зажигания приводит к более раннему тепловыделению относительно прихода поршня в верхнюю мертвую точку (ВМТ). В результате резко повышается давление, что способствует возрастанию степени сжатия рабочей смеси перед фронтом пламени и вызывает появление очагов самовоспламенения. Поэтому с увеличением угла опережения склонность к детонации возрастает и наоборот.
Тепловое состояние двигателяС ростом температуры деталей камеры сгорания увеличивается вероятность возникновения очагов самовоспламенения и детонации.
Температура и давление воздуха на впуске в цилиндрУвеличение температуры и давления окружающей среды усиливает вероятность детонации. Поэтому применение наддува в двигателях с принудительным воспламенением затруднено.
Степень сжатияУвеличение степени сжатия приводит к увеличению температуры и давления в конце процесса сжатия. Следовательно, увеличение степени сжатия ограничивается, и ее максимально допустимое значение выбирается в зависимости от сорта топлива, формы камеры сгорания, материала поршня, головки блока цилиндров, быстроходности двигателя и способа его охлаждения.
Форма и размеры камеры сгоранияДвигатели с формой камеры сгорания, обеспечивающей наибольшую турбулизацию смеси, более защищены от детонации. С этой точки зрения наиболее рациональными являются камеры сгорания в поршне или клиновые и плоскоовальные камеры с вытеснителями. Уменьшение пути пламени от свечи до периферийных зон камеры сгорания сокращает время его распространения и тем самым снижает вероятность возникновения детонации. Следовательно, детонацию ограничивает применение двух свечей зажигания вместо одной и уменьшение диаметра цилиндра.
Материал поршня и головки блока цилиндровМатериал этих деталей во многом определяет теплоотвод от рабочего тела. Применение алюминиевых сплавов, обладающих высокой теплопроводностью, позволяет снизить требования к октановому числу бензина на 5…7 единиц.
***
Для того чтобы устранить данное явление, необходимо обратить внимание на причины его возникновения и помнить, что детонация происходит при включенном зажигании, ненормальные явления, возникающие при глушении мотора, имеют иное название и требует иных мер.
Если двигатель стал работать с детонацией сразу после заправки - значит, в бак попало некачественное горючее. Если двигатель бензиновый, можно добавить в топливный бак немного ацетона, - он повысит октановое число. Либо придется некачественное топливо из бака слить и заправиться более качественным.
Детонация дизельного двигателя иногда сопровождается черным или зеленоватым выхлопом. Это означает, что разрушились поршни, и выхлопные газы содержат частицы алюминия. В такой ситуации необходима замена поршневой группы.
Из-за неисправных свечей зажигания может возникать детонация при запуске двигателя. В этом случае свечи необходимо заменить. У дизельного двигателя такая проблема может возникнуть после западания иглы форсунки.
Если автомобиль постоянно эксплуатируется с минимальной нагрузкой или же его двигатель часто и подолгу работает на холостом ходу, в камерах сгорания откладывается слой нагара, из-за чего повышается степень сжатия и увеличивается риск появления детонации. В данном случае полезна своеобразная профилактика - двигателю необходимо периодически давать работать с большой нагрузкой. Хороший метод такой профилактики - периодические динамичные разгоны и движение на пониженной передаче с высокими оборотами.
Разумеется, такая профилактика не должна противоречить правилам дорожного движения.
Современные автомобильные двигатели, оснащенные компьютерным управлением системами питания и зажигания, предохраняют от детонации при помощи датчика, который так и называется - датчик детонации. Он чутко реагирует на посторонние стуки, появляющиеся в двигателе и подает сигнал компьютеру (ЭБУ), а тот, в свою очередь, корректирует зажигание, пытаясь устранить детонацию.
***
Не следует путать детонационное сгорание с преждевременным самовоспламенением, которое может произойти во время процесса сжатия еще до момента появления искры - в результате поджига горючей смеси от раскаленной поверхности центрального электрода свечи зажигания, головки выпускного клапана или нагара. Такое воспламенение носит название калильного зажигания.
Воспламенившаяся от накаленных поверхностей рабочая смесь затем сгорает с нормальной скоростью, однако, момент самовоспламенения неуправляем, и со временем наступает все раньше и раньше. При этом давление и температура достигают своего максимума задолго до прихода поршня в ВМТ, что приводит к уменьшению мощности двигателя и его перегреву. Устранить это явление выключением зажигания нельзя - двигатель будет продолжать работать. Поэтому в случае появления калильного зажигания необходимо просто прекратить подачу горючей смеси. Иногда водитель пытается остановить двигатель, работающий от калильного зажигания, попыткой трогаться с места на высшей передаче. Двигатель в этом случае глохнет от недостатка тягового усилия на коленчатом валу, но детали КШМ, а также элементы трансмиссии могут повредиться из-за ударных нагрузок.
В некоторых случаях аналогично калильному зажиганию возникает самовоспламенение топлива от чрезмерного сжатия – явление дизилинга. Такое воспламенение наблюдается при выключении зажигания, когда прогретый карбюраторный двигатель не останавливается и продолжает работать с пониженной частотой вращения коленчатого вала. При этом его работа нестабильна и сопровождается вибрациями.
Дизилинг нередко имеет место при степени сжатия более 8,5. Для его устранения применяют специальные устройства, автоматически перекрывающие в карбюраторе канал холостого хода при выключении зажигания.
***
Свойства автомобильных бензинов
Детонация — это разложение (взрывание) взрывчатых веществ при помощи воспламенения детонаторов, отличающееся максимальными скоростью и разрушительным действием. Разложение взрывчатых веществ может происходить с различной скоростью в зависимости от ряда условий. При так называемом прогрессивном горении тепло, выделяющееся при разложении взрывчатых веществ, передается ближайшим еще неразложившимся слоям, которые в свою очередь начинают горсть и таким образом нагревают последующие слои.
Скорость при этом горении зависит напрямую от природы вещества, температуры и давления, его физического состояния. Например увеличение давления при горении пироксилина в закрытом сосуде повышает скорость взрыва, которая достигнет сотен метров в секунду, в то время как на воздухе скорость разложения его незначительна.
В отличие от прогрессивного горения детонация происходит почти мгновенно по всей массе взрывчатого вещества, и благодаря громадному, моментально образующемуся давлению взрыв производит особенно разрушительное действие, почти равномерно во все стороны (бризантное действие), в то время как взрыв, обусловливаемый прогрессивным горением, создает давление, действующее главным образом в сторону наименьшего сопротивления.
Механизм детонации состоит в том, что взрыв одного слоя вещества дает удар, сжимающий соседний слой, который вследствие сжатия нагревается и взрывается в свою очередь. Этот процесс (сжатие — нагревание — взрыв) идет с громадной скоростью, порядка нескольких тыс. км/сек, и носит название «взрывной волны».
Таким образом механизм прогрессивного горения отличается от механизма детонации тем, что в первом случае нагревание, необходимое для начала разложения взрывчатого вещества, происходит вследствие непосредственной передачи тепловой энергии от горящих слоев к последующим, а при детонации эта передача тепла происходит не непосредственно. Сначала энергия передается как механическая (сжатие от удара) и затем уже превращается в тепло, обусловливающее дальнейшее течение процесса.
Для детонации каждого взрывчатого вещества, в одинаковом физическом состоянии, необходимо вполне определенное минимальное количество данного детонатора при условии, если детонатор помещается в капсюле одинакового устройства и капсюль одинаково располагается относительно взрывчатого вещества. Чем прочнее стенки капсюля, наполненного детонатором, и чем капсюль ближе к взрывчатому веществу, тем меньшее количество детонатора необходимо для взрыва.
Прессованные и сухие взрывчатые вещества детонируют легче, чем непрессованные и влажные. Примесь инертных веществ уменьшает способность к детонации. Иногда детонация производится не непосредственно: например влажный пироксилин детонируется сухим пироксилином, который в свою очередь детонируется гремучей ртутью.
Воспламенение детонаторов производится или ударом, или нагреванием, последнее достигается при помощи бикфордова шнура (тонкая трубка, наполненная динамитом), накаленной током проволочки или электрической искры. Скорость детонации определяется в специальных приборах, состоящих из различной длины трубок, наполненных испытуемым веществом. Вещество детонируется у одного конца трубки, и отмечается время, в течение которого взрыв распространяется до другого конца. Частное от деления длины трубки в метрах на время в секундах дает скорость детонации в метрах в секунду.
Время измеряется при помощи специального электрического хронографа. Существуют приборы, позволяющие определить скорость детонации и без хронографа (прибор Дотриша); они основаны на зажигании взрывом определенных отрезков бикфордова шнура, соединенных с началом и с концом трубки, наполненной испытуемым веществом. Для скорости детонации имеет значение форма заряда: так, в узких трубках скорость детонации меньше, чем в широких.
Детонация двигателя является одной из самых тревожных проблем транспортного средства, но не многие знают, что это такое и с чем связано. В принципе, она возникает, когда смесь воздух/топливо внутри цилиндра неправильно распределяется, что делает неравномерным горение. В нормальных условиях топливо сгорает в цилиндре в процессе смешивания с воздухом и необходимой энергией. Когда начинается взрыв внутри цилиндра, оно горит неравномерно, что может повредить стенки цилиндра и сам поршень.
Детонация мотора появилась одновременно с рождением двигателя внутреннего сгорания и описывается как автоматическое зажигание газа в камере сгорания. В первое время не было возможности проверить её действие и бытовало мнение, что всё дело в зажигании. Тем не менее только в 1940 годах была проверена теория её возникновения, возможность обнаружения и последующие действия устранения этого явления.
Когда двигатель переходит в детонацию, слышится громкий шум. Поскольку её последствия очень печальны, важно определить, что является причиной такого взрывного горения горючей смеси. Чтобы устранить проблему, возможно, нужно изменить работу двигателя, в противном случае она может его разрушить в короткий промежуток времени. Характерный звук от двигателя в процессе этого явления обусловлен давлением волны в случае сгорания от вибрации стенок цилиндра. Газ и форма, размеры и толщина камеры сгорания и стенки цилиндра определяют высоту звуковой волны.
Детонация двигателя на холостом ходу может произойти после прохождения транспортным средством условий, которые способствуют повышению нагрева деталей силового агрегата. Даже если выключить зажигание, под воздействием энергии коленчатый вал продолжает движение, что приводит к попаданию топлива в цилиндр мотора, а там оно успевает нагреться до такой температуры, что само по себе воспламеняется.
Детонация двигателя является крайне нежелательным процессом при работе двигателя вашего автомобиля. Так как сама детонация является неконтролируемым процессом ускоренного сгорания топливно-воздушной смеси сопровождаемая резкими ударными нагрузками на ЦПГ (цилиндро поршневую группу), а так же кривошипно-шатунный механизм. Разберемся с причинами возникновения детонации:
1. Заниженное октановое число
Первым делом при возникновении детонации двигателя следует перейти на заправку двигателя более высокооктановым бензином (в пределах разрешенных заводом производителем). В современных двигателях степень сжатия является повышенной, что подразумевает использование топлива с повышенным октановым числом.
2. Раннее зажигание
Часто встречаются случаи с установкой сильно раннего зажигания. Делается это для того, чтобы двигатель лучше «реагировал» на открытие дроссельной заслонки. Так оно и есть, но в этом трюке есть одна тонкость. Устанавливая слишком раннее зажигание мы провоцируем возникновение преждевременного воспламенения топливно-воздушной смеси как раз в тот момент, когда поршень движется вверх к ВМТ (верхней мертвой точке), а раннее воспламенение оказывает на него противодействующую ударную нагрузку, что и приводит к детонации и повышенному перегреву внутри цилиндра.
3. Обеднённая смесь
Обедненная смесь имеет повышенное содержание воздуха и недостаточное содержание топлива. Такая смесь создается в двух случаях: либо в случае ошибки в регулировках, либо намеренно для увеличения мощности двигателя.
В случае качественной смеси (как предусмотрено заводом) топливо обеспечивает более плавное ее воспламенение, что позволяет контролировать температуру горения. Обедненная же смесь вызывает перегрев внутренних элементов двигателя, что влечет при дальнейших впрысках топлива, неконтролируемое воспламенение смеси. Обедненная смесь сильно увеличивает шансы возникновения детонации двигателя.
4. Нагар/отложения в камере сгорания
Детонация двигателя может возникать в случае образования отложений, которые создают «тепловую рубашку» в камере сгорания, что соответственно приводит к значительному повышению рабочих температур и неконтролируемому воспламенению смеси в цилиндре.
5. Свечи зажигания
Для каждого двигателя внутреннего сгорания предназначены свечи подходящие под конкретный двигатель по тепловым характеристикам. Несоответствием же свечей может быть вызвана детонация двигателя. Следует помнить, что при регулярно повторяющейся детонации прогорают днище поршня и клапана. А так же возникает сильный износ двигателя за счет не рассчитанных ударных нагрузок на внутренние детали. При обнаружении детонации следует заняться скорейшим устранением причины, во избежание дорогостоящего ремонта.
При таком «неправильном» сгорании топлива температура в цилиндрах резко повышается, что пагубно сказывается на свечах зажигания, клапанах и поршневых кольцах. Резкая температура способствует выгоранию масляной пленки на цилиндрах, что в свою очередь, неизбежно приводит к более интенсивному износу цилиндропоршневой группы вплоть до залегания колец и появления задиров на стенках цилиндров. Выгорание электродов свечей, трещины, зазубрины и оплавления на поршнях, клапанах и цилиндрах, – это далеко не полный список последствий детонационных стуков в двигателе.
Наряду с высокой температурой возникает и ударная нагрузка на все движущиеся части механизмов двигателя. В первую очередь страдает кривошипно-шатунный механизм. Сильные ударные нагрузки негативно сказываются на состоянии поршня, шатуна, а также коренных и шатунных вкладышей и коленчатого вала. Другими словами, ни один механизм двигателя не приспособлен к детонационным нагрузкам.
К чему приводит сильная детонация двигателя, признаки которой изложены выше?
Во-первых, существенно падает мощность мотора и происходит интенсивный износ деталей кривошипно-шатунного механизма.
Во-вторых, в результате этих негативных процессов двигатель сильно перегревается, что приводит к разрушению поршней и поверхности цилиндров.
В-третьих, если не устранить причину детонации, может прогореть прокладка под головкой цилиндров. Иногда для увеличения крутящего момента повышают угол опережения зажигания, что является одной из самых распространенных причин возникновения детонации. Существенно увеличивается риск ее появления, если осуществлялось самостоятельное и неоправданное изменение заводских регулировок для соотношения в горючей смеси топлива и воздуха (обедненная смесь).
Естественно, мы должны посоветовать, как устранить детонацию двигателя, приступим. Детонация не возникает на пустом месте. Если до заправки двигатель работал, как часы, а после нее стал детонировать, то причина может быть в топливе, которое необходимо слить и заправить автомобиль качественным бензином (соляркой).
При продолжительной эксплуатации автомобиля без существенных нагрузок возможно образование нагара в цилиндрах, что вызывает увеличение степени сжатия и снижение эффективности отвода тепла. Существует простой способ решения этой проблемы. Рекомендуется раз в несколько дней давать двигателю максимальную нагрузку, то есть разогнать автомобиль до максимальной скорости буквально на пару минут. Только не стоит этого делать в условиях плотного потока городского транспорта. Иногда детонация дизельного двигателя сопровождается черным или зеленоватым выхлопом. Это говорит о том, что в цилиндрах произошло разрушение поршней, и через выхлопную трубу вылетают частицы алюминия. В этом случае простыми регулировками уже ничего не исправить. Потребуется замена поршневой группы.
Небольшая детонация при запуске двигателя может возникать в результате нарушения работы свеч зажигания. На дизельном моторе это происходит, если запала игла форсунки. В первом случае ничего не стоит просто заменить неисправные свечи, а вот во втором – не обойтись без посещения СТО.
Чтобы избежать последствий данной проблемы, рекомендуется:
Заправлять автомобиль только бензином с октановым числом, отмеченным в руководстве по эксплуатации машины и только на сертифицированных АЗС.
Важно следить за состоянием элементов системы охлаждения, регулярно проверять уровень охлаждающей жидкости, при необходимости заменять ее. Также рекомендуется регулярно осматривать радиатор, при необходимости очищать его, а также следить за работоспособностью охлаждающего вентилятора. Выполнение этих несложных условий поможет избежать внезапного перегрева двигателя и как его следствия, детонации.
Также верным избавлением от этой дисфункции двигателя служит регулировка угла опережения зажигания. После регулировки зажигания желательно сделать пробный заезд, на котором следует разогнать автомобиль до 40-50 км/ч и резко нажать педаль акселератора. Если при этом характерные звуки под капотом несильные и непродолжительные, то зажигание можно считать отрегулированным. Если же нет, процедуру регулировки необходимо повторить. Ну и, разумеется, свечи и проводка должны быть чистыми и исправными. Зная, что такое детонация и методы ее устранения, можно обеспечить двигателю своего автомобиля долгую и безаварийную жизнь.
Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.
Была ли эта статья полезна?Водителям старой закалки, которые начинали свой автомобильный путь 15-20 лет назад и ранее, вряд ли нужно рассказывать, что такое детонация. Эту информацию они впитывали буквально с первых уроков автошколы, и она была одним из пунктов правильного вождения и обслуживания автомобиля. Характерный звук детонации, который в народе прозвали «стуком пальцев», каждый заучивал буквально с первых километров. Однако начинающие автомобилисты, которые лишь недавно вступили в ряды водителей, могут вообще не знать о таком явлении. Современные автомобили худо-бедно научились бороться с детонацией, и она перестала быть такой распространенной. Но в этом и опасность – сама детонация, как физическое явление, никуда не делась и в современных моторах, при возникновении она все равно наносит сильный вред двигателю, особенно, когда водитель не знает что это такое и как с ней бороться.
Воспламенение смеси в цилиндрахГоворя научным языков, детонация – это произвольное самовоспламенение смеси в цилиндрах двигателя, которое имеет характер взрывной волны. Именно последний параметр отличает детонацию от других случаев самовозгорания смеси в цилиндрах (например, калильного зажигания). Основная проблема детонации не в том, что топливо-воздушная смесь воспламенилась не в «свое» время, а в том, что скорость распространения этого огня в 500-1000 раз больше чем в случае обычного «поджига» от свечи. Именно ударная волна и приводит ко всем негативным последствиям детонации.
Чтобы было понятно, о какой напасти идет речь, перечислим негативные моменты, которые детонация оказывает на двигатель.
1. Все элементы мотора получают перегрузки, что заметно сокращает их ресурс. Особенно страдают поршни и коленвал.
Поврежденный поршень из-за детонации2. Из-за повышения температуры увеличивается риск прогара клапанов и прокладки головки блока.
Прогоревший клапан3. Детонационная волна смывает масляную пленку со стенок цилиндров, что может привести к задирам.
Задир в цилиндреКстати, характерный звук при возникновении детонации это вовсе не стук пальцев, как принято считать, а удары взрывной волны от детонации по стенкам цилиндров. Если бы пальцы двигателя были настолько изношены, что издавали бы такие звуки, то владельцу этого мотора надо было бы думать не о детонации, а о капремонте.
Понятно, что детонация это прежде всего самовоспламенение. Но почему смесь вообще самопроизвольно загорается? В идеальных условиях этого не происходит, однако стоит появиться нескольким дополнительным факторам и тепловая работа двигателя нарушается. И тут сразу жди детонацию.
1. Неправильное октановое число бензина. Двигатель проектируется инженерами под использование топлива определенного типа. Степень сжатия, форма камеры сгорания, сечение клапанов все это выбирается с учетом характеристик топлива. Если использовать бензин, у которого октановое число ниже, то все расчеты нарушаются, а топливо-воздушная смесь начинает детонировать. Это справедливо и для топлива с различными присадками, которое формально по ОЧ подходит. Кстати, у газа октановое число очень высокое, больше 100, поэтому при работе на газу детонация встречается очень редко.
2. Слишком раннее зажигание. Неправильный угол установки зажигания также один из факторов, которые приводят к детонации. Противоречие в том, что двигатель любит раннее зажигание, но его же любит и детонация, так что при настройке нужно найти компромисс, чтобы двигатель работал хорошо, но без детонации.
Угол опережения зажиганияВ карбюраторную эпоху этот навык оттачивали годами, ведь выставлять зажигание приходилось ориентируясь только на слух и ощущения. Инжекторная эпоха эти навыки нивелировала. Теперь зажиганием заведует электронный блок управления, а в самом двигателе встроен специальный датчик. При малейших намеках на детонацию, ЭБУ начинает регулировать угол зажигания. При этом нужно понимать, что его возможности небезграничны – и полностью компенсировать другие факторы ЭБУ не может. Вот почему даже в инжекторную эпоху детонация не является пережитком прошлого.
3. Обедненная топливно-воздушная смесь. Ситуация аналогичная зажиганию, раньше все регулировки были механические и неправильно настроенный карбюратор мог приводить к серьезной детонации, но теперь все в руках электроники, которая очевидных «косяков» не совершает. Не стоит забывать про случаи перепрошивки, когда мотор специально переводят на бедную смесь или проблемы с инжектором, из-за которых смесь в цилиндрах получается неправильной.
4. Неподходящие свечи. Использование свечей с характеристиками, которые отличаются от рекомендованных производителем, тоже может привести к детонации. Смесь сгорает не полностью и ее остатки начинают детонировать.
5. Нагар на стенках камеры сгорания. Закоксованность двигателя тоже один из факторов появления детонации. Слой отложений ухудшает теплоотвод, элементы двигателя сильно нагреваются и от них поджигаются остатки смеси.
Нагар на стенках6. Манера вождения. Детонация не любит высокие обороты, когда цилиндры быстро «проветриваются», а у несгоревшей смеси мало шансов где-то дополнительно воспламениться. Но детонация любит высокую нагрузку, топлива в цилиндры поступает много и сгорает оно не полностью. Из этого нетрудно сделать вывод – езда на низких оборотах со значительным нажатием педали газа это просто рай для детонации. Водители часто про это забывают – поднимаются в горку на высоких передачах, пытаются резко ускориться чуть ли не с холостых оборотов, не меняют момент переключения передач при увеличении загрузки. Все это способствует детонации. Правда, речь идет только о машинах с механическими коробками передач, «автоматы», вариаторы и «роботы» обычно настраивают, чтобы исключить такие режимы работы.
Водитель, который не обращает внимание на детонацию, серьезно сокращает ресурс двигателя и приближает его ремонт. Закрывать глаза на регулярное появление детонации нельзя, стоит задуматься над причиной.
1. Владельцу карбюраторного авто нужно проверить зажигание и карбюратор. Зажигание можно диагностировать самому, для этого есть выработанная годами рекомендация. Разогнаться до 40 км/ч, включить 4 передачу (речь, конечно, только о механике) и нажать педаль газа в пол. В идеальной ситуации двигатель должен детонировать буквально пару секунд (если детонации совсем не будет значит зажигание слишком позднее), а потом перейти на нормальный режим работы. Карбюратор в домашних условиях настроить труднее, тут и опыт нужен, и газоанализатор, так что с этим вопросом лучше в сервис.
2. У инжекторных автомобилей появление детонации чаще всего связано с некачественным топливом. Попробуйте поменять заправку или использовать бензин с более высоким октановым числом.
3. Всем водителям, вне зависимости от типа двигателя, стоит оценить манеру вождения. Общая рекомендация – не «насиловать» двигатель на низких оборотах, а выбирать режим работы двигателя в зависимости от степени открытия дросселя. При постоянных стояниях в пробках есть рекомендация периодически раскручивать двигатель до отчески, чтобы сжигать образовавшийся нагар.
Как видите, бороться с детонацией не трудно, но эти простые меры помогут продлить жить двигателя и избавят водителя от многих проблем.
С уважением, Александр Нечаев.
"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453