С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Конденсатор для запуска двигателя автомобиля


ATOM 1750. Запуск автомобиля от суперконденсаторов

Группа компаний AURORA с гордостью представляет конденсаторное пусковое устройство нового поколения AURORA ATOM 1750.

Небольшая историческая справка:

Как только человек придумал самодвижущуюся тележку на паровом двигателе (1768г.), а позже (1886) усовершенствовал мотор до ДВС – у водителя появилась задача не только направлять лошадиные силы в нужную сторону, но и запускать их в работу.

Проблема пуска двигателя в разные времена решалась по-разному. Для парового мотора достаточно было развести огонь под котлом, бензиновые двигатели требовали мышечной силы или химического источника тока.

С появлением аккумуляторов возникла необходимость обслуживания и контроля заряда стартерных батарей, особенно в зимний период. Часто, в помощь штатному АКБ, автовладельцу приходилось использовать внешний источник тока: сетевое пусковое устройство, запасной свинцово-кислотный АКБ, или новинку последних лет компактные пусковые устройства на базе Литий-Полимеров.

Главная проблема химических источников тока – саморазряд и старение. Срок службы классического свинцово-кислотного аккумулятора со свободным электролитом составляет около 3х лет. Гелевые и AGM аккумуляторы «живут» дольше, однако и они не вечны. Даже если АКБ бездействует – в нём происходят химические процессы, которые приводят к постепенной потере ёмкости батареи.

Это замечание верно и для пусковых устройств на основе аккумуляторов, например, средний срок службы Li-Po пускача составляет 3-5 лет, за это время токопроводный гель которым наполнены аккумуляторы твердеет и постепенно теряет свои свойства. Инженеры- конструкторы давно ищут источник тока который мог бы заменить аккумуляторы и избавить автовладельцев от «слабых мест» АКБ.

Речь в данной статье пойдёт о конденсаторах. Точнее о супер-конденсаторах или ионисторах, способных отдавать огромные токи и обладающих рядом преимуществ в сравнении с аккумуляторами. Как заменить АКБ машины на сборку из конденсаторов, конструкторы ещё не придумали, однако инженерам из Carku удалось создать устройство способное помочь в запуске двигателя автомобиля, тот самый ATOM 1750. 

Главное отличие данного аппарата от аккумуляторных аналогов – вечный срок службы! Если говорить о пусковых устройствах на базе Литий-полимерных или Свинцово-кислотных батарей, то продолжительность их работы ограничена одной-тремя тысячами циклов заряд/разряд. Конденсаторные пускачи обеспечивают до миллиона циклов. Для того, чтобы представить масштаб предположим, что Вы используете ATOM 1750 дважды в день в течение календарного года. Ресурса прибора при такой интенсивности работы хватит (1.000.000 : (365х2))= 1млн. : 730= 1369 лет.

Вторая особенность – неприхотливость ионисторов. Для хранения конденсаторных пусковых устройств не нужны особые условия: вы можете положить аппарат в бардачок или под сиденье авто, и вспомнить о нём, только когда аккумулятору машины понадобится помощь. Аппарат – идеальный вариант для забывчивых водителей. Если следить за уровнем заряда батареи нет ни времени ни желания – аппарат можно спокойно хранить в машине в самые лютые холода или в жару. 

Третий плюс – наличие встроенного литиевого аккумулятора. Запас энергии, который хранится в полностью заряженной Li-Ion батарее аппарата ёмкостью 6000mAh – сможет зарядить конденсаторы устройства для более чем 6 пусков подряд. Батарея не участвует в пуске, и предназначена только для зарядки конденсаторов. Вот здесь и кроется та самая ложка дёгтя: любой аккумулятор боится глубокого разряда. Если батарею на долгое время оставить без зарядки – АКБ, рано или поздно, выйдет из строя. Саморазряд, свойственный в той или иной мере любому аккумулятору добьёт разряженную батарею. Напоминаем, что профилактическую зарядку неиспользуемой литиевой батареи необходимо проводить 1 раз в пол-года.

Высокие и низкие температуры хранения ускоряют процессы саморазряда и деградации АКБ. Температурный режим хранения встроенного аккумулятора рекомендованный производителем составляет от 0 до +25С. Впрочем, даже если штатная батарея устройства выйдет из стоя конденсаторы АТОМ 1750 – запитанные от разряженного автомобильного АКБ всё равно смогут запустить двигатель машины.

Плюс номер четыре. Возможность зарядки ионисторов прибора от разряженной АКБ машины. Для пуска двигателя достаточно подключить крокодилы аппарата к клеммам «уставшего» АКБ и уже через 45-60 сек. – автомобиль будет готов к старту.

Более подробно про особенности АТОМ 1750:

Аппарат представляет собой профессиональный джамп-стартер. В отличие от Li-Po аналогов, пуск двигателя производится не за счёт энергии запасённой в аккумуляторе, а при помощи мощных ультраконденсаторов. Мощности пускача достаточно для запуска бензиновых двигателей объёмом до 5л и для работы с дизельными моторами до 2л.

МОЩЬ

Сборка из пяти ионисторов ёмкостью 350F каждый, выдаёт пусковые токи до 350А , что говорит о широком диапазоне применения данного устройства. 

Высокий стартовый ток АТОМ 1750 подкреплён стабильным напряжением, которое выдают конденсаторы. Аппарат обеспечивает заявленный ток на протяжении 3х секунд, что является одним из важнейших условий запуска двигателя.

МОБИЛЬНОСТЬ

Вес пускача составляет 1.3 кг. Для сравнения, схожий по возможностям свинцово-кислотный бустер весит более 6 кг (DRIVE 900), а разница в габаритах впечатляет ещё больше.

На боковых гранях АТОМ 1750 расположены: 

  • Яркий LED–фонарь, способный работать в трёх режимах. Для того, чтобы включить освещение и менять режимы работы следует нажать на кнопку на фронтальной панели; 

  • USB вход (5В, 2А), для зарядки от сети, Power Bank или другого источника;

  • Встроенные крокодилы. 

На передней панели расположен:

Дисплей (1) для отображения рабочих параметров, кнопка «Boost» (2) для заряда ионисторов от встроенного аккумулятора, кнопки включения фонаря и питания устройства (3).

ЗАЩИТА

В качестве силовых кабелей на аппарате используются медные провода сечением 6мм2, длинной 300 мм.

Интеллектуальный блок, не только защищает пусковое устройство от переполюсовки, короткого замыкания и обратных токов генератора, но и позволяет за несколько минут продиагностировать АКБ машины и вывести результаты проверки на табло.

АТОМ 1750 - подскажет владельцу, что аккумулятор машины нуждается в зарядке, либо, что АКБ – пора заменить на новый.

Если при подключении к аккумулятору машины на экране появляется надпись JUMP START READY – цепь работает в штатном режиме. Можно приступать к пуску двигателя.

Надпись «REVERSED» сообщает о неправильном подключении крокодилов. Следует проверить полярность – красный зажим должен быть соединён с плюсовым контактом АКБ, чёрный с минусовым.

ЗАРЯДКА

Обратите внимание, при подключении АТОМ к источнику тока, сначала заряжаются ультраконденсаторы, затем, начинается зарядка встроенной батареи устройства.

Представим себе ситуацию, когда вокруг никого а запустить двигатель у штатного АКБ машины – не получается.

Первый способ запуска машины с помощью АТОМ 1750 – заключается в зарядке конденсаторов непосредственно от клемм разряженного АКБ автомобиля. После подключения аппарата дожидаемся появления надписи JUMP START READY и запускаем двигатель не снимая крокодилы с клемм. Время зарядки конденсаторов зависит от уровня разряда АКБ и составляет от 45 сек до 2.5мин.

Второй способ зарядки – через гнездо прикуривателя. Атом 1750 можно подключить к бортовой сети с помощью специального переходника из комплекта. Время зарядки около 2 минут.

Третий источник энергии – встроенная батарея прибора. После нажатия на кнопку Boost – аппарат использует энергию запасённую в Литиевом аккумуляторе. Время зарядки – 2-3мин.

Ну и последний вариант зарядки, если под рукой нет иных источников, - придётся искать розетку. С помощью блока питания от мобильной электроники (5V, 2А) – конденсаторы можно зарядить и от сети.

Ещё один Важный момент. Заряжать Атом 1750 можно не только от собственного разряженного АКБ, но и от ЛЮБОГО автомобиля-донора (большая и маленькая машины – показать). В отличие от «прикуривания» - операция зарядки ионисторов АТОМ 1750 - абсолютно безопасна, и не требует соблюдения никаких условностей, кроме полярности подключения.

ПУСК АВТОМОБИЛЯ

Для того, чтобы приступить к использованию Джамп-стартера хозяину машины следует убедиться, что зажигание автомобиля выключено. При подключении - следует соблюдать полярность: красный кабель устройства соединяется с плюсовой клеммой аккумулятора автомобиля, чёрный с минусовой клеммой.

После подключения можно приступать к запуску двигателя. Если в течение 3х секунд мотор не запустился – следует зарядить конденсаторы ещё раз и повторить попытку.

После того, как двигатель заработал «крокодилы» с клемм аккумулятора следует снять.

ATOM 1750 поставляется в картонной коробке. 

В комплекте с аппаратом: 

  • Шнур для зарядки аппарата от прикуривателя автомобиля; 

  • USB-Кабель.

Напоминаем, что одним из условий продолжительной службы аппарата является своевременная зарядка встроенного аккумулятора устройства, поэтому после каждого пуска с использованием энергии аккумулятора – необходимо отправить АТОМ на зарядку. При длительном хранении рекомендуем заряжать устройство до уровня 80-90% один раз в 6 месяцев. Хранить аппарат следует при плюсовой температуре.

Смотрите данную статью в видео-ролике:

Доработка схемы зажигания автомобиля

Самым ответственным моментом при эксплуатации автомобиля является пуск двигателя. Особенно актуален этот вопрос в зимнее время года, когда на улице стоят большие морозы. Все смазочные материалы, в том числе и масло в картере двигателя внутреннего сгорания, теряют вязкость, и создают чрезмерную дополнительную механическую нагрузку на стартер.

Рекомендаций по решения этой проблемы в Интернете представлено великое множество, от подогрева масла в картере двигателя дополнительным нагревателем, до впрыскивания в цилиндры двигателя перед пуском легко воспламеняющихся веществ. Совершенствуются коммутаторы системы зажигания, делают много искровой режим зажигания, оптимизируют взаимное расположение и форму электродов свечей.

Но все это не дает максимального эффекта по одной простой причине, во время пуска двигателя напряжение бортовой сети автомобиля падает до 9,5 V и соответственно значительно падает величина высокого напряжения на выходе катушки зажигания. Предложенная доработка системы зажигания позволяет устранить этот недостаток.

Принцип работы системы зажигания автомобиля

Рассмотрим часть схемы электрооборудования автомобиля, составляющую систему зажигания. От аккумулятора напряжение положительной полярности, через предохранитель поступает на контакты замка зажигания и реле зажигания.

Когда ключ из замка зажигания автомобиля вынут, все контакты в замке зажигания разомкнуты, и напряжение на систему зажигания не подается. Если ключ вставить в замок зажигания и повернуть его по часовой стрелке на один сектор, контакты в замке зажигания замкнутся и напряжение поступит на обмотку реле зажигания, по обмотке потечет ток, создаст магнитное поле, которое притянет якорь реле.

Контакты реле замкнутся, напряжение питания поступит на низковольтную обмотку катушки зажигания и через нее на коллектор транзистора VT коммутатора. Пока вал двигателя не вращается, на базу транзистора не поступают открывающие импульсы управления, и он закрыт, ток дальше не течет. В применяемых в настоящее время схемах зажигания автомобилей, элементов начерченных синим цветом (диод VD1 и конденсатор С1) нет.

Для пуска двигателя необходимо повернуть ключ в замке зажигания по часовой стрелке еще на один сектор. Стартер начнет вращаться и на коммутатор с датчика вращения поступят управляющие импульсы. Транзистор VT на время 1-2,5 мс откроется и через низковольтную обмотку катушки зажигания пойдет ток. Сердечник катушки начнет намагничиваться, и создаст в высоковольтной обмотке катушки зажигания высокое напряжение. Величина напряжения будет зависеть от соотношения количества витков в катушках.

Для надежной работы двигателя система зажигания должна создавать высокое напряжение с запасом, величиной не менее 25 кВ. Напряжение, при котором происходит пробой (образуется искра) между электродами в свече составляет 14-17 кВ. Таким образом, должен обеспечивается запас по высокому напряжению около 7 кВ, что гарантирует стабильную искру в свечах при любых условиях запуска двигателя.

Величина высокого напряжения в момент запуска двигателя автомобиля

При работе двигателя, за счет работы генератора, напряжение в бортовой сети автомобиля обычно составляет 14,1±0,2 В. На первичную обмотку катушки зажигания, за вычетом падения напряжения (1,2 В) на транзисторе VT, поступают импульсы величиной 14,1 В-1,2 В=12,9 В. В этом режиме величина импульсов на вторичной обмотке катушки зажигания для образования искры в свечах составляет 27 кВ.

В момент пуска двигателя напряжение на выводах заряженного аккумулятора может снижаться до 9,5 В, если аккумулятор заряжен не полностью, то напряжение может быть и меньше. Тогда с учетом падения напряжения на транзисторе VT, величина напряжения на первичной обмотке катушки составит 9,5 В-1,2 В=8,3 В, это на 35% меньше, чем напряжение при работающем двигателе. При этом величина высокого напряжения тоже уменьшится на 35% и составит 17 кВ. Новая свеча создает искру при напряжении 12-17 кВ. Если установлены свечи с напряжением пробоя 17 кВ, то в таком случае искрообразование может быть нестабильным. Расчеты показали, что даже для нового автомобиля с узлами и деталями системы зажигания, находящимися в исправном состоянии, запаса по высокому напряжению может и не быть.

Что же тогда говорить о системе зажигания автомобиля, находящегося в эксплуатации не один год. Происходит старение изоляции свечей и выгорание ее электродов. В высоковольтных проводах и катушке зажигания тоже происходит старение изоляции, что приводит к дополнительным потерям. Несколько лет эксплуатируемый аккумулятор тоже вносит свою лепту. Путь тока от аккумулятора к катушке зажигания проходит по проводам через контакты предохранителя, реле зажигания, соединительные колодки и клеммы. На них тоже происходит падение напряжения.

В дополнение для устойчивого возникновения искры в зазоре свечи при сильно охлажденной воздушно бензиновой смеси требуется подавать на нее более высокое напряжение. Таким образом, запуск двигателя старого автомобиля с первой попытки при больших морозах существующая схема зажигания обеспечить с гарантией не может. Последующие попытки запуска двигателя могут полностью разрядить аккумулятор, с чем большинству автолюбителей доводилось сталкиваться.

С проблемой запуска двигателя в дни с большими морозами я столкнулся давно, когда ездил на автомобиле «Ока». Так как двигатель у «Оки» двух цилиндровый, то запустить его, из-за наличия мертвой точки, гораздо сложнее, чем четырех цилиндровый. Менял датчик холла, коммутатор, катушку зажигания, высоковольтные провода, свечи, но достичь уверенного запуска двигателя в морозы так и не получилось.

Проанализировав электрическую схему зажигания, пришел к выводу, что если подключить электролитический конденсатор к выводу катушки зажигания, на который подается +12 В, то все плохие контакты, через которые подается питающее на катушку напряжение наоборот, буду играть положительную роль, так как будут уменьшать разряд конденсатора. Сначала я установил только конденсатор С1, не хотелось резать провода для впайки диода VD. Пуск двигателя значительно улучшился. После установки диода, который не позволяет разряжаться конденсатору в электропроводку автомобиля при пуске двигателя, «Ока» стала с первого раза, на удивление многим, заводится даже при 25 градусном морозе.

Работает схема следующим образом. Когда вставляется ключ зажигания и поворачивается до первого фиксированного положения, конденсатор С1 через диод VD быстро зарядится от аккумуляторной батареи с учетом падения напряжения на диоде около 1,2 В, до напряжения 11,5 В. При пуске двигателя, на катушку зажигания будет подано не напряжение с аккумулятора величиной 9,5 В, а напряжение с заряженного конденсатора 11,5 В. Таким образом высокое напряжение упадет не на 35%, а всего на 20% и высокое напряжение составит не менее 23 кВ, что вполне достаточно для уверенного возникновения в свечах искры.

Эффективность работы схемы можно еще улучшить, если поставить дополнительно автомобильное реле, подключить его обмотку параллельно реле пуска стартера, а пару нормально замкнутых контактов параллельно диоду. Тогда, когда стартер будет выключен, напряжение с аккумулятора на катушку зажигания будет подаваться, минуя диод. Если в реле стартера есть свободная пара нормально замкнутых контактов, то можно использовать их и не устанавливать дополнительное реле. Замыкание с помощью реле выводов диода еще повысит высокое напряжение на выходе катушки зажигания на несколько киловольт.

Конструкция и детали

Диод VD1 подойдет любого типа, рассчитанный на ток не менее 8 А и обратное напряжение не менее 25 В. Еще лучше применить диод Шоттки, например 90SQ045 (45 В, 9 А). Тогда необходимость в установке дополнительного реле отпадет, так как падение на диоде Шоттки составит всего 0,2 В, что и без установки дополнительного реле увеличит высокое напряжение на несколько киловольт. Такие диоды используют в низковольтном выпрямителе блоков питания компьютеров.

Электролитический конденсатор подойдет любого типа, рассчитанный на напряжение не менее 25 В и емкостью не менее 20000 мкф. Конденсатор должен быть рассчитан на работу в широком диапазоне температур, минус 30-65 градусов Цельсия. Лучше всего подходит конструкция конденсатора с выводами, рассчитанными на винтовое подключение. Я устанавливал конденсатор как на фото.

Если нет подходящего по емкости конденсатора, то можно подключить параллельно, соблюдая полярность, несколько конденсаторов меньшей емкости. При параллельном соединении плюсовые выводы конденсаторов соединяются с плюсовыми, а минусовые с минусовыми. Общая емкость тогда составит сумму всех соединенных параллельно конденсаторов.

Например, есть 4 конденсатора емкостью 4700 мкФ, соединив их параллельно, получим конденсатор емкостью 18800 мкФ.

Что касается реле, то можно применить любое автомобильное реле, имеющее нормально замкнутые контакты.

Конденсатор желательно установить в непосредственной близости с катушкой зажигания, но, для предотвращения его перегрева, на максимально возможном удалении от двигателя. Место установки должно не допускать попадания влаги на выводы конденсатора во время движения автомобиля. Предложить готовое решение по размещению диода и конденсатора сложно, так как каждая марка автомобиля имеет оригинальную конструкцию, и место установки деталей приходится выбирать индивидуально.

Вместо конденсатора можно применить кислотный аккумулятор небольшой емкости, например от UPS компьютера. Это еще более лучший вариант, чем установка конденсатора. Дополнительный аккумулятор будет при работе двигателя постоянно подзаряжаться и благодаря тому, что система зажигания будет питаться от двух аккумуляторов, дополнительный аккумулятор всегда будет полностью заряжен. При пуске двигателя на систему зажигания будет всегда подаваться напряжение питания более 12 В.

Для безотказного запуска двигателя автомобиль перед наступлением холодов должен быть подготовлен к зимней эксплуатации. Необходимо залить масло в двигатель и коробку передач, предназначенное для работы при низких температурах. Необходимо в обязательном порядке заменить свечи и фильтры, масляный, воздушный и бензиновый. И конечно самое главное это техническое состояние аккумулятора. Даже если аккумулятор новый, его обязательно нужно зарядить от внешнего зарядного устройства. Если все эти требования заблаговременно выполнены, то с пуском двигателя в холодное время года проблем не будет.

Двигатель автомобиля рекомендуется запускать в следующем порядке:

  • Необходимо вставить ключ в замок зажигания, повернуть по часовой стрелке на один сектор и убедиться, что все электроприборы отключены. Хотя они при работе стартера должны отключаться автоматически, но, тем не менее, лучше их отключить, чтобы не создавать дополнительную нагрузку на двигатель в первый момент после его пуска.
  • Для приведения холодного аккумулятора в боевое состояние, его нужно прогреть, включив на 20-30 секунд форы или габаритные огни.
  • Если коробка не автоматическая, то обязательно выжать педаль сцепления до упора. При этом будет отключена от двигателя коробка передач, что существенно снизит нагрузку на стартер. 4. Включить зажигание на пол секунды, чтобы вал двигателя сдвинулся с мертвой точки, и масло смазало трущиеся поверхности двигателя.
  • Повторно включаем зажигание на время не более 3 секунд. Если двигатель не запустился, необходимо выждать до повторного запуска не менее 15 секунд. За это время подогретый еще за счет неудачного пуска двигателя аккумулятор наберется силы. Если за 5-6 попыток с паузами двигатель запустить не удалось и при этом аккумулятор не сел, значит, либо попавшая в механизмы вода замерзла и необходимо отогреть автомобиль, поместив его в теплый гараж. Или возникла неисправность и необходимо обращаться в сервис.
  • Если двигатель автомобиля запустился, то необходимо плавно отпустить педаль сцепления. После прогрева машина готова к поездке.

Конденсатор для запуска двигателя

На сегодняшний день электродвигатели являются основной составляющей любого производственного процесса. Запуск электродвигателя необходим в любом хозяйстве или в быту. Как правило, он используется для питания кондиционеров, вентиляторов, отопительных насосов и так далее. Именно поэтому каждый человек, связанный с электроникой должен хорошо знать схему подключения этого оборудования к сети 220в.

Устройство и предназначение конденсаторов

Для любых электродвигателей важными деталями являются не только радиотехнические, электронные детали и транзисторы, но и конденсаторы. При этом каждая схема запуска предусматривает определенное количество этих элементов. В то же время, полностью исключить их нельзя ни в одной схеме подключения.

Функциональные возможности

Конденсаторы выполняют самые различные функции. В первую очередь, они являются емкостями в фильтрах стабилизаторов и выпрямителей. Кроме того, конденсаторы обеспечивают передачу сигнала между каскадами усилителя. На основе этих деталей создаются фильтры подключения на высоких и низких частотах, а также устанавливаются временные интервалы и выбирается колебательная частота для различных электродвигателей.

Конденсатор для асинхронных электродвигателей предназначается для запуска и долговременной работы в системах переменного тока. В то же время, пусковой вариант может использоваться для относительно недлительного срока работы. Такое преимущество элементов для асинхронных электродвигателей обеспечивается тем, что они изготавливаются их полипропиленовой пленки.

Характеристики

Основным параметром любого подобного устройства является его емкость . В данном случае пусковой конденсатор имеет емкость, которая зависит от площади поверхности активного подключения и вида диэлектрика между ними. При этом размер устройства будет находиться в четкой зависимости от оксидного слоя диэлектрика. Этот оксидный слой, как правило, является достаточно тонким, так как для его формирования используется несколько атомных слоев. Благодаря этому удается разместить больше активной поверхности для запуска на определенной площади. Для частичного восстановления оксидного слоя используется электролит. Все это обеспечивается только при условии правильного подключения конденсатора к сети 220в с четкой полярностью.

Разновидности конденсаторов

Электролитические

Наиболее эффективными являются электролитические конденсаторы. Они обладают самой большой удельной емкостью, то есть наилучшим соотношением емкости к объему. Как правило, емкость таких электролитных устройств может достигать 100 000 мкФ. При этом рабочее напряжение в системе запуска и подключения колеблется от 220в до 600в. Подобные устройства являются идеальным вариантом для электродвигателей с низкой частотой, где они используются в фильтрах источников энергии. Именно поэтому такие устройства требуют подключения строго с учетом полярности. В качестве электродов здесь выступает тонкая оксидная металлическая пленка. Именно поэтому такие конденсаторы часто называют оксидными.

Полярный пусковой конденсатор не может использоваться для подключения через сеть переменного тока 220в. Ведь если сделать так, то может произойти разрушение структуры оксидного диэлектрического слоя. Это связано с изменением полярности напряжения с частотой 50 Гц. В результате разрушится оксидный слой, что уменьшит сопротивление и увеличит ток. Это приведет к перегреву конденсатора с выделением газа и короткому замыканию с маленьким взрывом.

Неполярные

Что касается неполярных конденсаторов, то их стоимость может быть существенно выше, чем электролитических. Что касается их размеров, то они тоже отличаются. Это связано с тем, что электролитические элементы обладают большей емкостью при тех же размерах. Такой тип аккумуляторов обладает куда большей емкостью по сравнению с полярными конденсаторами, которые имеют масляную основу.

Как подобрать конденсатор к электродвигателю

Подбор конденсатора для трехфазного электродвигателя является непростой задачей. Особенно это касается его подключения через однофазную сеть 220в. Для такого подключения должен обязательно использоваться пусковой фазосдвигающий механизм. При этом схема предусматривает не только пусковой конденсатор для запуска электродвигателя, но и рабочий элемент. При его выборе, в первую очередь, следует определиться с емкостью рабочего конденсатора. Ее определяют по специальным формулам, которые отличаются для схемы подключения звезда и треугольник.

После того, как вы выбрали емкость рабочего элемента, выбирается пусковой элемент. Как правило, его емкость должна быть в несколько раз большей. При этом емкость должна быть большей в тех условиях, когда электродвигателю предстоит преодолевать серьезное сопротивление во время запуска. То есть этот показатель будет находиться в четкой зависимости от рабочего напряжения на двигатель. Для определения этого показателя следует использовать специальную таблицу, в которой учитывается тот минимальный показатель емкости, который должен иметь пусковой конденсатор. Специалисты рекомендуют поддерживать номинальное напряжение фазосдвигающих устройств, которое должно превышать напряжение сети почти в два раза. Например, если собирается схема для подключения через сеть 220в, то номинальное напряжение для запуска должно превышать 500в. Если планируется использовать целый блок подобных устройств, то подключать их необходимо параллельно.

Запуск электродвигателя при помощи конденсатора

При подсоединении конденсатора к электродвигателю следует использовать определенные схемы, из которых самыми эффективными являются подключения типа треугольник и звезда. В любом случае, на первом этапе необходимо подключить элемент так, чтобы в последующем не было риска взрыва. Далее следует подобрать конденсаторы парами, чтобы они имели одинаковую емкость. Например, емкость в данном случае может достигать 300 мкФ. Чтобы обеспечить максимальную безопасность запуска электродвигателя, необходимо поместить конденсаторную батарею в специальную коробочку. Это обезопасит систему от возможных последствий маленького взрыва, который может иметь место при перегреве.

Схема треугольник

Основная сложность для подключения трехфазного мотора через однофазную сеть состоит в том, что нужно правильно распределить провода, выходящие в распределительную коробку. Если же в конструкции отсутствует коробка, то тогда эти провода просто нужно вывести наружу по отношению к электромотору. Наиболее простая ситуация, когда в электродвигателе через систему 220в все обмотки уже имеют подключения по схеме треугольник. В таком случае вам достаточно просто подсоединить токоподводящий провод и пусковой конденсатор к клеммам мотора.

Схема звезда

Также простой является ситуация, когда в электродвигателе обмотки были соединены звездой, но ее можно переподключить в треугольник. Для замены типа подключения следует просто поменять перемычки. Более сложной считается ситуация, когда в распределительную коробку выводится 6 проводов без какой-то конкретики. Чтобы решить эту проблему, придется найти соответствующую документацию для запуска и подключения системы.

Для подключения по схеме звезда необходимо:

  • найти начало и конец обмоток;
  • определить пару проводов, которые относятся к одной обмотке.

Подключение по схеме треугольник

Наиболее удачной для бытовых электродвигателей является схема однофазного подключения трехфазных моторов треугольник. Этот способ позволяет добиться наибольшей мощности на выходе. Мощность системы в данном случае может достигать 70% от начальной. При этом два контакта в распределительной коробке присоединяются сразу к двум однофазным проводам сети 220в. Что касается третьего провода, то для его подключения используют пусковой и рабочий элемент Ср. Его подсоединяют к одному из двух контактов или сетевым проводам.

Таким образом, конденсаторы являются необходимыми элементами для запуска электродвигателей. Они обеспечивают нормальную работу электромоторов при подключении различными схемами. Наиболее оптимальными и эффективными являются электролитные конденсаторы.

Главная » Электрооборудование » Электродвигатели » Однофазные » Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.

Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей .

Варианты схем включения — какой метод выбрать?

В зависимости от способа подключения конденсатора к двигателю различают такие схемы с:

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором .

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле .

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время. Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле. Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.

Это связано с принципом работы асинхронного двигателя. когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.

Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором .

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.

Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения. Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

Чтобы установить скрытую проводку в деревянном доме. необходимо кроме обладания определенными знаниями оценить все плюсы и минусы данного вида энергоснабжения помещений.

Наличие трехжильной проводки в частном доме предполагает использование системы заземления. которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать здесь .

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное видео о том, как подключить однофазный двигатель через конденсатор

Как подобрать конденсаторы для запуска электродвигателя

Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.

Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.

Электролит используют в том случае, если нужно восстановить слой оксидной пленки. Для правильной работы аппарата нужно чтоб система была подключена к сети с переменным током в 220 В и имела четко выраженную полярность.

То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.

Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток — его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.

Всего существует 3 основных вида конденсаторов:

Описание разновидностей конденсаторов и расчет удельной емкости

Схема подключения пусковых конденсаторов

Для электродвигателей с низкой частотой идеальным вариантом будет электролитический конденсатор, он обладает максимальной возможной емкостью, может достигать значения в 100000 мкФ. При этом напряжение может колебаться от стандартных 220 В до 600 В. Электродвигатели, в этом случае, могут использоваться в тандеме с фильтром источника энергии. Но при этом при подключении необходимо строго соблюдать полярность. Оксидная пленка, являющаяся очень тонкой, выступает в роли электродов. Зачастую электрики их называют оксидными.

  • Полярные лучше не использовать в системе подключенных к сети переменного тока. в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко.
  • Неполярные являются хорошим вариантом. но их стоимость и габариты значительно выше электролитических.
  • Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм. Притом их должно быть два, не только для самого конденсатора, но и для двигателя. Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.

    I1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);

    Uсети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.

    где Сп — Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.

    Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.

    При мощности От 0,4 до 0,8 кВт: рабочая емкость — 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.

    При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.

    Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко

    Схема подключения «Треугольник»

    Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 — рабочая, 3 –фаза.

    Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

    Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

    Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

    Нужно понять — сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

    Схема подключения «Треугольник» и «Звезда»

    Схема подключения «Звезда»

    А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.

    Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.

    В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.

    Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.

    Блиц-советы

    При подключении к сети в 660 В некоторые используют метод комбинированного запуска

    Самой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.

  • Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра . либо же читать инструкцию, зачастую производители указывают данную информацию там.
  • Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет — звезда.
  • При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду. Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.
  • Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю. а к фазе. Это также является маячком при неправильном подключении.
  • Источники: http://ekowheel.com/blog/elektrodvigatel/kondensatoryi-dlya-zapuska-elektrodvigatelya, http://elektrik24.net/elektrooborudovanie/elektrodvigateli/odnofaznye-elektrodvigateli/cherez-kondensator.html, http://housetronic.ru/electro/kondensatory-dlya-elektrodvigatelya.html

    Практическое применение конденсатора для запуска двигателя

    Чтобы обеспечить оптимальный запуск автомобильного мотора, используются различные устройства и механизмы, от работоспособности которых зависит его функциональность. Одним из таковых считается генераторный узел, позволяющий в нормальном режиме функционировать мотору. Что представляет собой генераторный конденсатор для запуска двигателя, и как его проверить в домашних условиях — узнайте из этой статьи.

    Конденсаторный элемент представляет собой одну из составляющих частей электросети транспортного средства. По своей конструкции конденсатор — это емкость, в состав которой входит пара электродов. Причем для нормальной работы они должны быть заизолированы между собой при помощи диэлектрика.

    Принцип работы

    Демонтаж конденсатора с генераторного устройства ВАЗ 2110

    Первостепенной функцией конденсатора является накопление электроэнергии. Соответственно, основным его параметром считается емкость — чем выше она будет, тем больше заряда сможет скопить конденсаторное устройство. На одной из установленных внутри корпуса пластин скапливается положительный заряд, а на второй — отрицательный. При этом он должен быть идентичным положительному заряду по величине.

    В тот момент, когда уровень тока на обеих пластинах будет одинаковым и достигнет максимальной отметки, устройство передаст заряд дальше по цепи. Таким образом, он сможет защитить регулятор напряжения генератора от негативного воздействия сигналов на его входе.

    В целом данное устройство выполняет такие задачи:

    1. В цепи работы регуляторного элемента он предотвращает переход схемы в режим колебаний. Кроме того, он также позволяет предотвратить вероятность появления высокочастотных импульсных помех на работоспособность регуляторного устройства. То есть при рабочем конденсаторном устройстве исключаются любые пульсации, а также помехи, что очень важно для электросети авто в целом.
    2. Также этот элемент ускоряет переключение транзисторного устройства, это происходит благодаря генерированию фактически мгновенных циклов разряда и заряда. Соответственно, в конечном итоге это приводит к снижению уровня энергетически затрат транзистора, а также к понижению уровня его нагрева. Иными словами, конденсаторный элемент позволяет устранить просадки напряжения на участке цепи (автор видео — канал Dmitriy Sherstniev).

    Как вы поняли, основной задачей детали является снижение помех в радиодиапазоне. Это — важное требование в современных автомобилях, поскольку конденсатор генератора позволяет обеспечить качественную работу автомагнитолы, в частности, радиоприемника. Причем неважно, в каких условиях машина передвигается.

    В электродвигателях авто

    Если речь идет об электродвигателе транспортного средства, то в них могут использоваться несколько видов конденсаторов — они бывают рабочими, а также пусковыми. Рабочие детали представляют собой элементы, обеспечивающие оптимальное и, что немаловажно, корректное функционирование электромотора. Что касается девайсов пускового типа, то их предназначение заключается в улучшении пусковых характеристик силового агрегата, поэтому их предназначение не менее важно.

    Какие функции выполняют пусковые конденсаторы:

    • более экономное использование электрических приборов и всего оборудования;
    • увеличение крутящего момента силового агрегата;
    • возможность работать в нормальных условиях при повышенных нагрузках в бортовой сети;
    • самая главная задача — обеспечение оптимального ресурса эксплуатации самого двигателя.

    Если рабочие детали функционируют при запущенном моторе, то пусковые активируются при заведении силового агрегата. Несмотря на том, что пусковые девайсы выполняют множество полезных функций, устройства рабочего типа позволяют обеспечить наиболее оптимальную работу мотора после запуска.

    Фотогалерея «Автомобильные конденсаторы»

    1. Конденсаторное устройство для генератора CBB61 36 2. Изделие для отечественной «десятки»

    Диагностика своими руками

    Диагностика данного компонента осуществляется при помощи тестера — можно использовать мультиметр. Важно, чтобы на приборе была шкала с разметкой от 1 до 10 мОм. Как вариант, для диагностики можно использовать и мегаомметр.

    Если конденсаторное устройство находится в исправном состоянии, то в результате диагностики вы должны увидеть, что:

    • первостепенные показания прибора, которым вы тестируете, будут равны бесконечности;
    • после подключения щупов к контактам, а именно, в момент соприкосновения, параметр сопротивления будет снижаться, после чего он опять вернется к бесконечности.

    Если же в ходе диагностики случилось обратное, это говорит о необходимости замены элемента. Покупая такой девайс в магазине, рекомендуем сразу же проверить его работоспособность, чтобы не купить бракованную деталь (автор видео о диагностике — канал TipS & TrickS).

    На что обращать внимание при выборе?

    Вкратце расскажем о том, ан какие моменты следует обратить внимание при выборе устройства:

    1. В первую очередь, обратите внимание на производителя. Конденсаторы сомнительного производства обычно имеют более короткий ресурс эксплуатации, в отличие от оригиналов.
    2. При покупке обратите внимание на метод установки, в частности, монтажа детали. Также желательно, чтобы она была оснащена защитой от замыканий.
    3. Если вы планируете самостоятельно установить изделие, то лучше отдать предпочтение деталям, оснащенным визуальными датчиками контроля от электросети авто. Это позволит значительно облегчить установку изделия и его использование в дальнейшем.

    При необходимости конденсатор можно установить к схеме с любой мощностью. На сегодняшний день отечественный рынок электроники предлагает потребителям огромный ассортимент конденсаторных устройств для транспортных средств. Причем начиная от дешевых и простых по конструкции изделий, и заканчивая более дорогими и фирменными вариантами.

     Загрузка ...

    Видео «Как запустить двигатель с конденсаторами Maxwell»

    Процесс запуска силового агрегата представлен на видео ниже (автор — канал Alex M).


    Смотрите также

     

    "Питер - АТ"
    ИНН 780703320484
    ОГРНИП 313784720500453

    Новости