С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Подача топлива в инжекторном двигателе


Подача топлива в инжекторном двигателе, описание особенностей

Инжекторные двигатели отличаются отсутствием карбюратора, вместо которого выступают новые системы подачи топливных смесей. При надавливании на педаль газа происходит автоматическое регулирование поступления воздуха в топливные цилиндры.

Контроль бензиновых растворов производит специальное электронное устройство, внедренное в двигатель. Подача топлива в инжекторном двигателе отличается конструктивными особенностями, способствующими уменьшению количества вредных веществ, выбрасываемым в атмосферу.

Отличия работы инжекторных двигателей

Принцип подготовки воздушно-топливных смесей полностью отличается от предыдущих. Для создания высокого давления в подаваемых смесях топливный бак имеет встроенный электрический бензонасос. Бензин под давлением поступает в специальный отсек — рампу с форсунками для впрыска в цилиндры, где происходит смешивание его с воздухом.

В зависимости от количества поступившего бензина, температуры двигателя, скорости вращения коленчатого вала электронное управляющее устройство (ЭБУ) регулирует такие параметры:

  1. Состав топливной смеси.
  2. Количество впрыскиваемой жидкости и объем воздуха.
  3. Расчет интервала, через который происходит открытие клапана на форсунке.

Топливо подается под автоматическим контролем. Электронное управление является мозговым центром автомобиля.

Автоматизация контроля поступления топлива в систему питания инжекторного мотора позволяет улучшить основные показатели машины:

  • скорость разгона;
  • показатели загрязнения экологии;
  • общий расход бензина.

Описание преимуществ инжекторных систем

По сравнению с карбюраторами системы питания инжекторного двигателя имеют следующие достоинства:

  1. Более тщательная дозировка количества топливной смеси позволяет существенно экономить общий расход.
  2. Использование датчиков, следящих за характеристиками топливных смесей и выхлопных газов, приводит к снижению токсичности выхлопа.
  3. Опережение зажигания, регулировка угла в соответствии с режимами двигателя способствует росту мощности почти на 10%.
  4. При изменениях нагрузки происходит мгновенная корректировка системой впрыска состава топливно-воздушной смеси.
  5. Наличие гарантированного облегченного запуска при любой погоде.
  6. Уменьшение количества углеводородов в отработанных газах

Недостатки инжекторных двигателей:

  • высокие цены на ремонт и обслуживание;
  • многие узлы и детали не подлежат восстановлению, возникает необходимость их полной замены;
  • повышенные требования к качеству бензина;
  • потребность в специализированном диагностическом, обслуживающем и ремонтном оборудовании.

Корректировка функций двигателя контроллером ЭБУ

Современные двигатели впрыскивающего типа используют обособленные форсунки, предназначенные для цилиндров. Бензонасос инжекторного двигателя создает необходимое давление, топливо через открытые клапаны форсунок поступает в специальную камеру для сжигания.

Электронный блок управления (ЭБУ) осуществляет регулирование момента открытия каждой форсунки. Встроенная система специальных приборов — датчиков служит для передачи необходимой информации управляющему устройству.

Данные, используемые ЭБУ:

  1. Расход воздуха.
  2. Расположение дроссельной заслонки.
  3. Контроль охлаждающей жидкости.
  4. Расположение коленчатого вала.
  5. Кислород в газах.
  6. Наличие детонации.
  7. Состояние распределительного вала.

Количество расхода воздуха влияет на автоматический перерасчет наполненности цилиндров отдельного цикла. При поломке считывающего прибора перерасчет производится по специальным таблицам аварийного состояния.

Загруженность двигателя, количество оборотов, наполненность цилиндров в одном цикле рассчитываются при помощи информации, предоставляемой датчиком расположения заслонки дросселя, отражающих угол ее открытия.

Прибор, отражающий нагрев охлаждающей жидкости, помогает откорректировать впрыск, зажигание, участвует в управлении электрической вентиляцией. При отказе датчика используются температурные данные, присущие определенному периоду действия силового агрегата, находящиеся в специальной таблице.

Датчик положения коленвала является прибором, без которого невозможно передвижение всей машины. При выходе из строя данного прибора автомобиль не в состоянии добраться даже до ближайшего СТО. С его помощью синхронизируется вся система, производится расчет оборотов движка, определяется расположение коленчатого вала в любой момент работы двигателя.

Кислородный прибор поставляет данные о насыщенности отработавших газов элементом О2. После получения сведений ЭБУ корректирует состав направляемого топлива, его количество. Международные нормы контроля выбросов Евро-2 и Евро-3 требуют использовать данные приборов, следящих за кислородом. Евро-3 предполагает наличие двух кислородных приборов, расположенных после каталитического катализатора и перед ним.

При сигнале специального датчика о возникновении детонации ЭБУ гасит ее путем корректировки угла опережения зажигания. Эксплуатация мотора с детонацией приводит к ускоренному сгоранию топлива. Возникают ударные нагрузки на двигатель, нагрев всех элементов, дымный выброс, прогорание поршней и клапанов, увеличение расхода топлива, снижение мощности силового агрегата. Такая работа мотора крайне нежелательна.

Датчик, контролирующий распределительный вал, подает информацию, необходимую для создания синхронности при впрыске.

В зависимости от встроенной системы впрыска силовые агрегаты комплектуются приборами, помогающими выявлять причины отсутствия поступления бензина в движок. Дополнительные приборы осуществляют контроль за выбросами.

Управляющий механизм также корректирует функционирование рабочих узлов:

  • системы зажигания;
  • вентилятора системы охлаждения;
  • регулятора холостого хода;
  • бензонасоса;
  • форсунок;
  • клапана адсорбера, предназначенного для улавливания паров бензина.

При запуске силового агрегата остатки паров автоматически направляются в камеру для последующего сжигания.

Благодаря четкому взаимодействию всех механизмов производится точное впрыскивание топлива. Состав и количество топливной смеси отрегулированы благодаря отлаженной работе ЭБУ.

Описание видов систем питания

Системы впрыска имеют несколько разновидностей:

  1. Одноточечные, при которых имеется одна форсунка и несколько цилиндров.
  2. Многоточечные, здесь каждый цилиндр снабжен своей форсункой.
  3. Непосредственные системы основаны на работе по принципу дизелей, где подача топлива производится форсунками прямо в цилиндры.

Схема системы питания одноточечного типа:

При применении одноточечных систем или моновпрыска используется минимальное количество управляющей электроники. На основании данных, полученных с датчиков, ЭБУ изменяет условия подачи топлива. При одноточечном впрыске существенно экономится бензин, улучшается состав выхлопа, повышается надежность двигателя. К недостаткам такого типа системы относится снижение приемистости двигателя, наблюдается скопление топлива на стенках коллектора в виде осадка.

Схема питания многоточечного впрыска:

Система питания многоточечного впрыска более совершенна. Здесь топливо подается на каждый цилиндр. Данный метод впрыска топлива отличается сложностью, однако мощность двигателя при этом возрастает почти на десять процентов.

При установке двигателей с многоточечным впрыском автомобиль получает ускоренный разгон благодаря настройкам и качественному наполнению цилиндров. Приближение клапанов впуска к форсункам способствует точности подачи топлива, минимизирует вероятность образования топливных осадков.

Впрыскивающие системы непосредственного типа обладают оптимальным сочетанием высокого качества сгорания воздушно-топливных смесей и повышенного КПД. В двигателях непосредственной системы питания более тщательно производится распыление и смешивание с воздушными потоками, происходит более грамотное распределение готовой смеси в зависимости от режимов работы мотора.

К преимуществам относится экономичность расхода топлива, увеличение интенсивности ускорения машины, более чистый выхлоп. К недостаткам можно отнести повышенные требования к качеству бензина. Топливная аппаратура такого двигателя очень капризна.

Проведение техобслуживания систем питания инжекторных двигателей

Мероприятия по техническому обслуживанию систем питания обладают особенностями:

  1. В процессе эксплуатации моторов наиболее часто подвергаются загрязнениям и выходу из строя воздушные фильтры. Каждые тридцать тысяч километров пробега необходимо менять фильтрующий элемент на новый экземпляр. Рекомендуется также регулярно очищать извлеченный узел от грязи и пыли при помощи щетки и встряхивания.
  2. Возникновение рывков при движении машины говорит о необходимости замены фильтра, производящего тонкую очистку топлива. Рекомендуется также производить плановые замены после очередных 30 тыс. км пробега.
  3. Форсунки подвергаются регулярным проверкам, производится замена регулятора холостого хода.

avtodvigateli.com

Как работает инжекторная система подачи топлива.

Воспользуйтесь строкой поиска, чтобы найти нужный материал

Главная Авто Как работает инжекторная система подачи топлива. Subaru Justy 1990 года выпуска, был последним автомобилем, выпущенным в США, в котором использовался карбюратор,  в следующей модели уже применялась инжекторная система подачи топлива. Однако инжекторная система подачи топлива известна с 50-х годов прошлого столетия, а управляемая электроникой, начиная примерно с 1980 года. На данный момент все автомобили, продаваемые в США, оснащены  инжекторной системой подачи топлива.

Почему не прижился карбюратор?

Карбюратор — устройство, которое подаёт топливо в двигатель. Например, в газонокосилках и бензопилах, до сих пор используется карбюратор. Автомобиль эволюционировал и карбюратор становился всё больше и сложнее.

Ему необходимо было выполнять пять различных функций:

  • Главная функция — обеспечить малое потребление топлива во время езды в “спокойном режиме”;
  • Функция холостого хода — обеспечить контролируемую подачу топлива для поддержания холостого хода;
  • Функция ускорительного насоса — обеспечить дополнительный впрыск топлива, когда нажата педаль газа;
  • Функция обогащения питания — обеспечить дополнительное топливо, когда автомобиль едет в гору или буксирует прицеп;
  • Функция подсоса — обеспечить дополнительное топливо, когда двигатель холодный;
В целях уменьшения количества вредных выбросов, были введены каталитические нейтрализаторы. Кислородный датчик определяет количество кислорода в выхлопе, а блок управления двигателем использует эту информацию, для того чтобы регулировать соотношение воздух-топливо в режиме реального времени.Это называется замкнутый цикл управления. Этого невозможно было добиться с карбюратором. До появления инжекторной системы впрыска топлива был короткий период электрически управляемых карбюраторов, но эти карбюраторы были ещё более сложными чем чисто механические. Сначала карбюратор заменили на моноинжектор, он представлял собой дроссельную заслонку,  совмещённую с форсункой. Следующим этапом после моноинжекторов стала система распределенного впрыска топлива. В отличие от моноинжектора в системе распределенного впрыска количество форсунок равно количеству цилиндров. 

Что происходит когда мы жмём на газ?

Педаль газа в автомобиле подключена к дроссельной заслонке. Дроссельная заслонка — это клапан, который регулирует количество воздуха, поступающего в двигатель. Когда мы нажимаем на педаль газа, дроссельная заслонка открывается, позволяя большему количеству воздуха попадать в двигатель. Блок управления двигателем, который управляет всеми электронными компонентами двигателя,  “видит”,  что дроссельная заслонка открылась и увеличивает расход топлива, в ожидании того,  что в двигатель поступит больше воздуха.Важно,  что бы расход топлива увеличивался как только откроется дроссельная заслонка, иначе при нажатии на педаль газа будет некоторое запаздывание.Датчики также регистрируют массу воздуха, поступающего в двигатель, и количество кислорода в выхлопе. Опираясь на эту информацию,  блок управления двигателем регулирует подачу топлива.

Форсунка.

Форсунка — это не что иное, как электромагнитный клапан, к которому подводится топливо и способный открываться множество раз в секунду. Когда на форсунку подаётся напряжение, электромагнитный клапан открывается и топливо под давлением распыляется через крошечные сопла. Сопла необходимы для того чтобы топливо превратить в мелкий туман, в таком состоянии оно лучше горит. Количество топлива, подаваемого в двигатель, определяется временем, когда топливная форсунка открыта. Это время зависит от ширины импульса, который подаёт электронный блок управления двигателем (ЭБУ). Форсунки установлены во впускном коллекторе и распыляют топливо прямо на клапана. Топливо подводится к форсункам через трубку,  которая называется топливной рампой. 

Датчики двигателя.

В целях обеспечения необходимого количества топлива на всех режимах работы двигателя, ЭБУ должен контролировать большое количество входных параметров, с различных датчиков.

Вот только некоторые из них:

  • Датчик массового расхода воздуха — сообщает ЭБУ массу воздуха, поступающего в двигатель;
  • Датчики кислорода — определяют количество кислорода в выхлопных газах, на основе этих данных ЭБУ корректирует качество смеси;
  • Датчик положения дроссельной заслонки — контролирует положение дроссельной заслонки, которая определяет какое количество воздуха попадёт в двигатель, это позволяет ЭБУ быстрее реагировать, уменьшая или увеличивая расход топлива. Дело в том, что массовый расходомер воздуха (который по сути определяет массу воздуха поступающего в двигатель) инерционен, то есть при изменении потока воздуха он реагирует с некоторым опозданием.Информация с дроссельной заслонки приходит раньше чем с массового расходомера воздуха, что позволяет нам не чувствовать его инерционности;
  • Датчик температуры охлаждающей жидкости — предоставляет данные ЭБУ о температуре охлаждающей жидкости;
  • Датчик абсолютного давления — контролирует давление воздуха во впускном коллекторе.По известному количеству воздуха, поступающего в двигатель, можно посчитать какая энергия образуется в двигателе. Чем больше воздуха поступает в двигатель, тем меньше разряжение во впускном коллекторе;
  • Вольтметр — контролирует напряжение сети, ЭБУ может поднять обороты холостого хода если напряжение сети упало, что указывает на высокую электрическую нагрузку;
Распределенный впрыск или как его ещё называют многоточечный, бывает четырёх видов:
  • Одновременный впрыск — все форсунки открываются одновременно;
  • Попарно-параллельный впрыск — форсунки открываются парами, только в одном цилиндре в это время впускной такт и топливо попадёт в цилиндр, а в другом выпускной. Но так как за попадание топлива в цилиндр отвечают клапана, это не мешает работе двигателя.В современных моторах попарно-параллельный впрыск используется в аварийном режиме, когда неисправен датчик распредвала,  также называемый датчиком фаз;
  • Фазированный впрыск — каждая форсунка открывается непосредственно перед впускным тактом;
  • Прямой впрыск — тот же фазированный впрыск, только топливо впрыскивается прямо в камеру сгорания;
Микросхемы, управляющие работой двигателя.Алгоритмы с помощью которых ЭБУ контролирует работу двигателя очень сложны.Программное обеспечение должно позволить автомобилю удовлетворить все требования по токсичности выбросов. ЭБУ использует формулы и большое количество таблиц, чтобы определить длительность импульса,  подаваемого на форсунки.Давайте рассмотрим как это примерно происходит. Есть уравнение с помощью которого можно вычислить длительность импульса, для управления форсункой. В это формула входит множество переменных, некоторые из них берутся из таблиц. Мы пойдём по упрощённой схеме расчёта, будем считать что уравнение,  которое описывает длительность импульса, состоит из двух коэффициентов и базовой длительности импульса, в реальной системе коэффициентов более сотни.

Выглядит формула следующим образом:

Длительность импульса = (базовая длительность импульса) х (коэффициент А) х (коэффициент B)Для того чтобы вычислить длительность импульса, ЭБУ сначала смотрит базовую длительность импульса в справочной таблице. Базовая длительность импульса зависит от частоты вращения двигателя (RPM) и нагрузки (которая может быть вычислена из абсолютного давления в коллекторе). Предположим обороты двигателя 2000 оборотов в минуту и нагрузка равна 4. Находим значение на пересечении 2000 и 4, оно составляет 8 миллисекунд.Далее, рассмотрим параметры А и B,  которые приходят с датчиков. Давайте предположим, что параметр А это температура охлаждающей жидкости, а параметр В это показания датчика кислорода. Если температура охлаждающей жидкости равна 100 и уровень кислорода равен 3, из справочных таблиц находим что коэффициент А равен 0,8 а коэффициент В равен 1.Теперь по известным данным рассчитаем длительность импульса: Длительность импульса = 8 х 0,8 х 1,0 = 6,4 мсИз этого примера,  видно, как ЭБУ регулирует длительность импульса.Системы реального контроля может иметь более 100 параметров, каждому параметру соответствует собственная таблица. И в зависимости от оборотов двигателя, ЭБУ, приходится производить расчёты более ста раз в минуту. 

Производительность чипов.

Теперь когда мы понимаем как работает ЭБУ, можем поговорить о том как увеличить мощность двигателя. В ЭБУ есть чип в котором располагаются все справочные таблицы. Этот чип можно заменить на аналогичный, с другими таблицами. Эти таблицы будут содержать в себе значения, которые будут увеличивать подачу топлива на определённых этапах езды.

Например, можно увеличить количество топлива поступающего в двигатель как на полном газу, так и на любых оборотах. Поскольку производители таких прошивок для чипов, не озабочены количеством вредных выбросов, они используют более агрессивные настройки подачи топлива, при написании прошивки.

Источник: http://auto.howstuffworks.com/fuel-injection.htm

hubstub.ru

Инжекторная система подачи топлива и ее работа

Инжекторная система подачи топлива в автомобилях стала массово распространяться с 80-х годов минувшего века. В их двигателях горючее в результате сжатия посредством форсунок-инжекторов под давлением впрыскивается в цилиндр или в коллектор впуска.

Инжекторная система подачи топлива

Чем хороша инжекторная система подачи топлива?

Время показало ее преимущества в сравнении с моторами, где топливо подается посредством карбюратора. Инжекторная схема мотора имеет немалые достоинства:

  1. Расход горючего в двигателях внутреннего сгорания меньше, что подтверждается инжекторной системой подачи топлива ВАЗ 2109;
  2. ДВС запускается проще, улучшаются его эксплуатационный режим;
  3. Система впрыска регулируется автоматически с помощью датчика кислорода;
  4. Отработанные газы содержат меньше углеводородов;
  5. При одинаковых объемах карбюраторного и инжекторного мотора у последнего мощность выше примерно на 10 %;
  6. В 2016 году производители автомобилей полностью отказались от карбюраторов в легковых и малых грузовых машинах.

Как работает инжектор?

Чтобы понять, как подается топливная смесь в инжекторный двигатель, необходимо представить себе устройство инжектора.

Обычно он состоит из:

  • Электробензонасоса;
  • Контроллера или электронного блока управления;
  • Регулятора давления;
  • Различных датчиков;
  • Собственно инжектора или форсунок.

Схема устройства инжекторной системы подачи топлива

Принцип работы инжектора достаточно прост. Контроллер анализирует поступающую от датчиков информацию и запускает бензонасос. Тот закачивает топливо в систему. С помощью регулятора давления обеспечиваются нужные параметры давления во впускном коллекторе и в инжекторах. Эти элементы хорошо работают в инжекторной системе подачи топлива ВАЗ 2107. Учитываются данные о положении и скорости вращения коленвала, расходе воздуха и другие. Электроника принимает решение о запуске двигателя и о том, как должен работать инжектор.

Принцип работы его основывается на четкой работе контроллера, который включает электромагнитный клапан форсунки с иглой. Он обеспечивает хорошее функционирование систем зажигания, подачи топлива, диагностики, охлаждения двигателя и других. В результате впрыск происходит точно в нужный момент. При этом топливовоздушная эмульсия подается в нужном количестве и составе.

Какими бывают инжекторы?

От форсунок в решающей степени зависит подача топлива в инжекторном двигателе. Долгое время весьма распространенной была система моновпрыска, при которой через одну форсунку можно осуществлять впрыск во все цилиндры. Определенное время она существовала наряду с многоточечным впрыском.

Эти виды инжекторов развивались по-разному. Моновпрыск не соответствовал Евро-3, быстро устарел и встречается не часто. Сегодня доминирует более совершенная система, с помощью которой осуществляется распределенный впрыск топлива.

Здесь на коллектор впуска цилиндра ставится отдельная форсунка или посредством нее топливная смесь попадает непосредственно в камеру сгорания. Распределенный впрыск топливной смеси может быть:

  • Одновременным;
  • Попарно-параллельным;
  • Фазированным или последовательным.

Особого внимания требуют машины, на которые ставятся несовершенные инжекторные системы подачи топлива. «Газель» является одним из примеров тому. Замена карбюраторного двигателя на инжекторный порой не уменьшала большой расход топлива.

Особенности устройства инжекторного двигателя

Для того чтобы грамотно эксплуатировать автомобиль, у которого имеется система питания бензинового двигателя с впрыском топлива, необходимо иметь представление о его работе. Особенно когда речь идет об отечественных автомобилях, инжекторной системе подачи топлива ВАЗ 2114 и других машин.

Без этого будет сложно самому понимать и устранять возможные неисправности машины. Усвоив особенности конструкции, принцип работы, устройство инжекторного двигателя можно разобраться в неисправности и даже устранить ее, не обращаясь на СТО.

Инжекторным двигателем управляет контроллер. В отечественных машинах его обычно размещают справа под приборной панелью. Задача этого прибора — непрерывно обрабатывать информацию о состоянии мотора и обеспечивать надежную работу его систем. Блок управления включает различные реле, форсунки, датчики.

С помощью встроенной системы диагностики происходит распознавание неполадки в двигателе, сигнализируя контрольной лампой, хранит коды диагностики неисправностей. Она располагает тремя запоминающими устройствами, позволяющими оперативно анализировать техническое состояние за разные периоды времени.

Принципиальной особенностью двигателя является наличие форсунок, которые обеспечивают дозированный впрыск топливовоздушной смеси во впускную трубу после получения команды от управляющего блока. При этом необходимый воздух подается при помощи дроссельного узла и регулятора холостого хода. Форсунки крепятся к рампе, которая установлена на впускной трубе.

Форсунка представляет собой электромеханический клапан, который при помощи пружины запирается иглой. Когда от блока управления подается на обмотку электромагнита форсунки импульс, игла поднимается, открывая сопло распылителя. Через него смесь подается во впускную трубу мотора. Форсунки требуют постоянного контроля. Малейшее их засорение может негативно сказаться на работе двигателя.

Устройство электромагнитной форсунки бензинового двигателя

Также важной частью этого двигателя является нейтрализатор, который преобразует вредные компоненты отработанных газов.

Основные системы

Сегодня большинство легковых автомобилей имеют инжекторный двигатель. Устройство его помимо блока управления и нейтрализатора предполагает наличие некоторых других важных систем. Среди них системы зажигания, подачи топлива и улавливания паров бензина.

Первая предусматривает наличие расположенного в топливном баке двухступенчатого электробензонасоса, фильтра для очистки топлива, топливопроводов и форсунок вместе с регулятором давления топлива. Фильтр расположен на топливной магистрали между топливной рампой и бензонасосом.

Например, в инжекторной системе подачи топлива ВАЗ 2110 не предполагаются наличия обычной катушки зажигания и распылителя в системе зажигания. В ней используется модуль и две катушки зажигания. Управляется она контроллером. Искра образуется одновременно в двух цилиндрах методом «холостой искры». Система не нуждается в обслуживании и регулировках.

Пары бензина улавливаются при помощи угольного адсорбера, устанавливаемого в моторном отсеке и соединенным с бензобаком и патрубком дросселя трубопроводами. Сверху этого устройства смонтирован электромагнитный клапан. При неработающем двигателе он закрыт.

Когда мотор запускается, он открывается. Блок управления посылает сигнал, воздухом продувается адсорбер. Бензиновые пары попадают в дроссельный патрубок, после чего сжигаются в цилиндрах.

Зачем нужны датчики?

Работа инжектора невозможна без наличия различных датчиков, которые сообщают контроллеру необходимую информацию. Работа датчиков инжекторного двигателя позволяет контролировать параметры работы мотора, предупредить его поломки.

Так, эти приборы различного назначения подают информацию:

  • О частоте, направлении вращения и положении коленвала;
  • Объеме всасываемого воздуха и его температуре;
  • О нагреве охлаждающей жидкости, что позволяет управлять впрыском и зажиганием;
  • О степени открытости дроссельной заслонки позволяет определить нагрузку двигателя;
  • О наличии кислорода в выхлопных газах, что помогает корректировать время впрыска и зажигание;
  • О появлении детонации, что предупреждает поломки мотора;
  • О состоянии распредвала для обеспечения синхронного впрыска.

В двигатель могут устанавливаться и другие датчики, обеспечивающие его надежную работу. Они помогают четко выявить причину, почему нет подачи топлива в двигатель.

blog-mycar.ru

Схема подачи топлива в дизельный и бензиновый двигатели

На старых бензиновых двигателях, не оборудованных системой впрыска, смесеобразование происходит в карбюраторе. Происходит это таким образом: капельки топлива попадают сначала в воздушный поток, проходящий на высокой скорости (от 50 до 150 м/с) через смесительную камеру, затем происходит их измельчение и испарение, в результате получается горючая смесь. Если мотор инжекторный, то образование смеси происходит во впускном коллекторе двигателя. Разница заключается в том, что бензин подается для смешивания с воздухом в уже распыленном виде через форсунки. Форсунка может быть одна (моновпрыск) или несколько (распределенный впрыск). Топливная система современных автомобилей предусматривает отдельные форсунки для всех цилиндров. У дизельного двигателя топливо подается через форсунку непосредственно в камеру сгорания, где происходит его смешивание с воздухом. На некоторые бензиновые моторы также устанавливается топливная система с непосредственным впрыском. Их отличие от дизеля заключается лишь в способе поджигания рабочей смеси: бензин поджигается свечой зажигания, дизтопливо – сжатием. Непосредственный впрыск позволяет достичь наиболее высокой топливной экономичности, однако из-за сложности конструкции широкого применения в бензиновых двигателях не нашел, тогда как для дизеля это единственно возможный вариант.

Топливная система инжекторного мотора

Устройство топливной системы бензинового впрыскового двигателя представлено следующими основными элементами:

  • бензобак;
  • бензонасос;
  • топливный фильтр;
  • адсорбер и шланг для отвода бензиновых паров;
  • подающий и сливной бензопровод;
  • топливная рампа;
  • форсунки.

Бензобак предназначен для хранения горючего, его объем, как правило, обеспечивает автомобилю около пятисот километров пробега без дозаправок. После включения зажигания при помощи электрического бензонасоса оно через фильтр грубой очистки, представляющий собой капроновую сетку, попадает в подающий топливопровод. После этого бензин проходит через топливный фильтр, где очищается от мелких механических примесей, и попадает в рампу, а затем через форсунки в цилиндры. Устройство топливной системы на некоторых автомобилях немного усложнено: топливный насос у них начинает работать при открытии водительской двери.

Если давление в топливной системе превышает максимально допустимый порог, то часть топлива сливается через регулятор давления обратно в бак. Вентиляция бензобака происходит через адсорбер. Данное устройство улавливает пары горючего из воздуха.

Схема системы питания включает в себя различные датчики, основываясь на показаниях которых электронный блок управления двигателем (ЭБУ) дозирует подачу горючего. К ним относятся датчик детонации, положения дроссельной заслонки и массового расхода воздуха.

Один из основных критериев, по которому топливная система автомобиля с бензиновым мотором отличается от дизеля, это требование к надежности всех соединений: бензиновый мотор не столь требователен к этому, в отличие от дизельного.

Система питания дизельного двигателя

Схема топливной системы двигателя, работающего на дизтопливе, несколько отличается от описанной ранее. Устройство системы питания дизеля обусловлено необходимостью обеспечивать более высокое давление горючего. В ее состав входят:

Схема работы в целом аналогична схеме, по которой работает топливная система бензинового двигателя. Горючее из бака подается к ТНВД при помощи подкачивающего насоса шестеренчатого или помпового типа. При этом вначале топливо проходит сквозь фильтр грубой очистки, где отсеиваются крупные механические примеси, а непосредственно перед топливным насосом высокого давления стоит фильтр тонкой очистки, задерживающий мелкие посторонние частицы. Повышенные требования к чистоте горючего объясняются желанием продлить срок службы дизеля.

Устройство подкачивающего насоса

Устройство и схема работы шестеренчатого подкачивающего насоса дизеля предельно просты: это две шестерни, находящиеся в постоянном зацеплении. Во время вращения зубья играют роль лопастей и создают ток горючего по топливопроводу к ТНВД.

Главный действующий элемент помпового насоса – поршень, нагнетающий топливо. Для подачи солярки требуется два хода поршня: рабочий (или основной) и вспомогательный.

Производительность подкачивающего насоса дизельного двигателя превышает потребность насоса высокого давления, поэтому часть горючего сливается из магистрали обратно в бак.

ТНВД нагнетает высокое давление в рампе, и солярка в мелкораспыленном состоянии впрыскивается в цилиндры дизеля. В действие данное устройство приводится кулачковым валом, который, в свою очередь, приводится от коленвала двигателя и вращается с меньшей частотой. Кулачок толкает плунжер топливного насоса, который выталкивает дизтопливо к форсункам.

Устройство топливного насоса высокого давления (ТНВД)

Схема внутреннего устройства ТНВД дизеля выглядит следующим образом: внутри корпуса, представляющего собой неподвижную гильзу, расположен плунжер – поршень, диаметр которого значительно меньше его длины. Вместе эти детали образуют плунжерную пару. Они притерты между собой таким образом, что зазор не превышает 4 мкм, благодаря чему не происходит утечки горючего. Такое устройство позволяло бы обеспечить топливом мотор, работающий постоянно на одних и тех же оборотах, поскольку количество топлива, подающегося за один ход плунжера неизменно. Однако работа дизеля в разных режимах требует и разного количества горючего. Для этого устройство плунжера немного усложнено: на его поверхности имеется спиральная выточка, позволяющая менять величину активного хода при помощи механизма поворота плунжеров.

Форсунка – это устройство, играющее первостепенную роль в процессе снабжения дизеля распыленным топливом. Чем мельче будут частицы, тем качественнее получится рабочая смесь и более устойчивой будет работа дизельного двигателя. Чтобы распыление происходило равномерно во всех направлениях, форсунки изготавливают многодырчатыми.

znanieavto.ru


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости