С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Расположить правильно элементы стабилизатора


Простые стабилизаторы напряжения и их расчёт

В этой статье пойдёт речь о стабилизаторах постоянного напряжения на полупроводниковых приборах. Рассмотрены наиболее простые схемы стабилизаторов напряжения, принципы их работы и правила расчёта. Изложенный в статье материал полезен для конструирования источников вторичного стабилизированного питания.

Начнём с того, что для стабилизации любого электрического параметра должна быть схема слежения за этим параметром и схема управления этим параметром. Для точности стабилизации необходимо наличие «эталона», с которым стабилизируемый параметр сравнивается. Если в ходе сравнения оказывается, что параметр больше эталонного значения, то схема слежения (назовём её схемой сравнения) даёт команду на схему управления «уменьшить» значение параметра. И наоборот, если параметр оказывается меньше эталонного значения, то схема сравнения даёт команду на схему управления «увеличить» значение параметра. На этом принципе работают все схемы автоматического управления всех устройств и систем, которые нас окружают, от утюга, до космического аппарата, разница лишь в способе контроля и управления параметром. Точно так же работает стабилизатор напряжения.

Структурная схема такого стабилизатора изображена на рисунке.

Работу стабилизатора можно сравнить с регулировкой воды, бегущей из водопроводного крана. Человек подходит к крану, открывает его, а потом, наблюдая за потоком воды, регулирует его подачу в большую, или меньшую сторону, добиваясь оптимального для себя потока. Сам человек выполняет функцию схемы сравнения, в качестве эталона выступает представление человека о том, какой поток воды должен быть, а в качестве схемы управления выступает водопроводный кран, который управляется схемой сравнения (человеком). Если человек изменит своё представление об эталоне, решив, что поток воды, бегущий из крана недостаточный, то он откроет его больше. В стабилизаторе напряжения точно так же. Если у нас появляется желание изменить выходное напряжение, тогда мы можем изменить эталонное (опорное) напряжение. Схема сравнения, заметив изменение эталонного напряжения, самостоятельно изменит и выходное напряжение.

Резонным будет вопрос: Зачем нам такое нагромождение схем, если можно на выходе использовать источник уже «готового» эталонного напряжения? Дело в том, что источник эталонного (далее по тексту – опорного) напряжения – слаботочный (низкоамперный), поэтому не способен питать мощную (низкоомную) нагрузку. Такой источник опорного напряжения можно использовать в качестве стабилизатора для питания схем и устройств, потребляющих малый ток – КМОП-микросхем, слаботочных усилительных каскадов и др.

Схема источника опорного напряжения (слаботочного стабилизатора) изображена ниже. По своей сути – это специальный делитель напряжения, описанный в статье Делитель напряжения, отличие его в том, что в качестве второго резистора используется специальный диод – стабилитрон. В чём особенность стабилитрона? Простыми словами, стабилитрон, это такой диод, который в отличие от обычного выпрямительного диода, при достижении определённого значения обратно приложенного напряжения (напряжения стабилизации) пропускает ток в обратном направлении, а при его дальнейшем повышении, уменьшая своё внутреннее сопротивление, стремится удержать его на определённом значении.

На вольтамперной характеристике (ВАХ) стабилитрона режим стабилизации напряжения изображен в отрицательной области прикладываемого напряжения и тока.

По мере увеличения обратного напряжения, прикладываемого к стабилитрону, он сначала «сопротивляется» и ток, протекающий через него минимален. При определённом напряжении, ток стабилитрона начинает увеличиваться. Достигается такая точка вольтамперной характеристики (точка 1), после которой дальнейшее увеличение напряжения на делителе «резистор – стабилитрон» не вызывает увеличения напряжения на p-n переходе стабилитрона. На этом участке ВАХ происходит увеличение напряжения лишь на резисторе. Ток, проходящий через резистор и стабилитрон продолжает расти. От точки 1, соответствующей минимальному току стабилизации, до определённой точки 2 вольтамперной характеристики, соответствующей максимальному току стабилизации стабилитрон работает в требуемом режиме стабилизации (зелёный участок ВАХ). После точки 2 вольтамперной характеристики стабилитрон теряет свои «полезные» свойства, начинает греться и может выйти из строя. Участок от точки 1 до точки 2 является рабочим участком стабилизации, на котором стабилитрон выступает в качестве регулятора.

Зная, как рассчитывается простейший делитель напряжения на резисторах можно элементарно рассчитать цепь стабилизации (источник опорного напряжения). Как и в делителе напряжения, в цепи стабилизации протекают два тока – ток делителя (стабилизатора) Iст и ток нагрузочной цепи Iнагр . В целях «качественной» стабилизации последний должен быть на порядок меньше первого.

Для расчётов цепи стабилизации используются значения параметров стабилитронов, публикуемые в справочниках:

  • Напряжение стабилизации Uст;
  • Ток стабилизации Iст (обычно — средний);
  • Минимальный ток стабилизации Iст.min;
  • Максимальный ток стабилизации Iст.max.

Для расчёта стабилизатора, как правило, используются только два первых параметра — Uст , Iст , остальные применяются для расчёта схем защиты по напряжению, в которых возможно значительное изменение входного напряжения.

Для повышения напряжения стабилизации можно использовать цепочку из последовательно соединённых стабилитронов, но для этого, допустимый ток стабилизации таких стабилитронов должен быть в пределах параметров Iст.min и Iст.max , иначе существует вероятность выхода стабилитронов из строя.

Следует добавить, что простые выпрямительные диоды также обладают свойствами стабилизации обратно приложенного напряжения, только значения напряжений стабилизации лежат на более высоких значениях обратно приложенного напряжения. Значения максимального обратно приложенного напряжения выпрямительных диодов обычно указывается в справочниках, а напряжение при котором проявляется явление стабилизации обычно выше этого значения и для каждого выпрямительного диода, даже одного типа, различно. Поэтому, используйте выпрямительные диоды в качестве стабилитрона высоковольтного напряжения только в самом крайнем случае, когда не сможете найти необходимый Вам стабилитрон, или сделать цепочку из стабилитронов. В этом случае, напряжение стабилизации определяется экспериментально. Необходимо соблюдать осторожность при работе с высоким напряжением.

Расчет простейшего стабилизатора напряжения мы проведём с рассмотрением конкретного примера.

Исходные, предъявляемые к схеме параметры:

1. Входное напряжение делителя — Uвх (может быть стабилизированным, а может и нет). Допустим, что Uвх = 25 вольт;

2. Выходное напряжение стабилизации — Uвых (опорное напряжение). Допустим, что нам необходимо получить Uвыx = 9 вольт.

Решение:

1. Исходя из необходимого напряжения стабилизации, по справочнику подбирают необходимый стабилитрон. В нашем случае это Д814В.

2. Из таблицы находят средний ток стабилизации — Iст . По таблице он равен 5 мА.

3. Вычисляют напряжение, падающее на резисторе — UR1, как разность входного и выходного стабилизированного напряжения.

UR1 = Uвx — Uвыx —> UR1 = 25 – 9 = 16 вольт

4. По закону Ома делят это напряжение на ток стабилизации, протекающий через резистор, и получают значение сопротивления резистора.

R1 = UR1 / Iст —> R1 = 16 / 0,005 = 3200 Ом = 3,2 кОм

Если полученного значения нет в резистивном ряде, выберите ближайший по номиналу резистор. В нашем случае это резистор номиналом 3,3 кОм.

5. Вычисляют минимальную мощность резистора, помножив падение напряжения на нём на протекающий ток (ток стабилизации).

РR1 = UR1 * Iст —> РR1 = 16 * 0,005 = 0,08 Вт

Учитывая, что через резистор кроме тока стабилитрона протекает ещё и выходной ток, поэтому выбирают резистор, мощностью не менее, чем в два раза больше вычисленной. В нашем случае это резистор мощностью не меньшей 0,16 Вт. По ближайшему номинальному ряду (в большую сторону) это соответствует мощности 0,25 Вт.

Вот и весь расчёт.

Как было написано ранее, простейшую цепочку стабилизатора постоянного напряжения можно использовать для питания схем, в которых используют малые токи, а для питания более мощных схем они не годятся.

Одним из вариантов повышения нагрузочной способности стабилизатора постоянного напряжения является использование эмиттерного повторителя. На схеме изображён каскад стабилизации на биполярном транзисторе. Транзистор «повторяет» приложенное к базе напряжение.

Нагрузочная способность такого стабилизатора возрастает на порядок. Недостатком такого стабилизатора, как и простейшей цепочки состоящей из резистора и стабилитрона, является невозможность регулировки выходного напряжения.

Выходное напряжение такого каскада будет меньше напряжения стабилизации стабилитрона на значение падения напряжения на p-n переходе «база – эмиттер» транзистора. В статье Биполярный транзистор, я писал, что для кремниевого транзистора оно равно – 0,6 … 0,7 вольта, для германиевого транзистора – 0,2 … 0,3 вольта. Обычно грубо считают – 0,65 вольта и 0,25 вольта.

Поэтому, например при использовании кремниевого транзистора, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет на 0,65 вольта меньше, т.е – 8,35 вольта.

Если вместо одного транзистора использовать составную схему включения транзисторов, то нагрузочная способность стабилизатора возрастёт ещё на порядок. Здесь также, как и в предыдущей схеме следует учитывать уменьшение выходного напряжения за счёт его падения на p-n переходах «база – эмиттер» транзисторов. В данном случае, при использовании двух кремниевых транзисторов, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет уже на 1,3 вольта меньше (по 0,65 вольт на каждый транзистор), т.е – 7,7 вольта. Поэтому, при проектировании подобных схем необходимо учитывать такую особенность и подбирать стабилитрон с учётом потерь на переходах транзисторов.

Резистор R2 необходим для «гашения» реактивной (емкостной и индуктивной) составляющей транзистора VT2, оказывающей паразитное влияние на работу транзистора, и обеспечивает надёжное его реагирование на входное воздействие. Чем меньше сопротивление резистора, тем меньше паразитное влияние, но слишком малое сопротивление может привести к тому, что транзистор VT2 окажется закрытым и в качестве регулирующего элемента окажется только транзистор VT1. Практически, на схемах стабилизаторов, значение резистора R2 рассчитывают редко. Бывает, радиолюбители даже ставят такие номиналы, которые противоречат нормальной работе схем, а сами радиолюбители даже об этом не подозревают. Поэтому его значение подбирают исходя из максимального расчётного нагрузочного тока. Через этот резистор должен протекать ток, приблизительно в 50 раз меньше максимального нагрузочного тока стабилизатора. Цифра 50 — это усреднённое значение коэффициента передачи силовых транзисторов, работающих в режиме больших токов. Сопротивление резистора определяется по закону Ома. Значение падения напряжения на переходе «база – эмиттер», (для кремниевого транзистора – 0,65 вольт) делится на максимальный ток нагрузки стабилизатора (например 2,5 ампер). Полученное значение умножается на 50. Если Вы используете составные транзисторы, то это значение может быть больше на 1 — 2 порядка (не 50, а 500…5000).

R2 = UR2 / Iст.max * 50 —> R2 = 0,65 / 2,5 * 50 = 13 Ом

Рассчитанное таким образом сопротивление позволяет более эффективно гасить реактивную составляющую выходного транзистора и полноценно использовать мощностные способности обоих транзисторов. Не забывайте производить расчёт требуемой мощности резисторов, иначе всё сгорит в неподходящий момент. Выход из строя резистора R2 может привести к выходу из строя транзисторов и того, что Вы подключите в качестве нагрузки. Расчёт мощности стандартный, описанный на страничке Резистор.

Основные параметры для транзистора в стабилизаторе напряжения: максимальный ток коллектора, максимальное напряжение «коллектор-эмитер» и максимальная мощность. Все эти параметры всегда имеются в справочниках.1. При выборе транзистора необходимо учитывать, что паспортный (по справочнику) максимальный ток коллектора должен быть не менее, чем в полтора раза больше максимального тока нагрузки, который вы хотите получить на выходе стабилизатора. Это делается для того, чтобы обеспечить запас по току нагрузки при случайных кратковременных бросках нагрузки (например короткого замыкания). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

2. Максимальное напряжение «коллектор-эмитер» характеризует способность транзистора выдерживать определённое напряжение между коллектором и эмитером в закрытом состоянии. В нашем случае этот параметр должен также превышать не менее, чем в полтора раза напряжение подводимое к стабилизатору от цепи «трансформатор-выпрямитель-фильтр питания» вашего блока стабилизированного питания.

3. Паспортная выходная мощность транзистора должна обеспечивать работу транзистора в режиме «полуоткрытого» состояния. Всё напряжение, которое вырабатывается цепочкой «трансформатор-выпрямительный мост-фильтр питания» делится на две нагрузки: собственно нагрузка вашего блока стабилизированного питания и сопротивление коллекторно-эмитерного перехода транзистора. По обоим нагрузкам течёт один и тот же ток, поскольку они подключены последовательно, а вот напряжение делится. Из этого следует, что необходимо выбрать такой транзистор, который при заданном токе нагрузки способен выдерживать разницу между напряжением, вырабатываемым цепочкой «трансформатор-выпрямительный мост-фильтр питания» и выходным напряжением стабилизатора. Мощность вычисляется как произведение напряжения на ток (из учебника физики средней школы).

Например: На выходе цепи «трансформатор-выпрямительный мост-фильтр питания» (а значит на входе стабилизатора напряжения) напряжение равно 18 вольт. Нам необходимо получить выходное стабилизированное напряжение 12 вольт, при токе нагрузки 4 ампера.

Находим минимальное значение необходимого паспортного тока коллектора (Iк max):

4 * 1,5 = 6 ампер

Определяем минимальное значение необходимого напряжения «коллектор-эмитер» (Uкэ):

18 * 1,5 = 27 вольт

Находим среднее напряжение, которое в рабочем режиме будет «падать» на переходе «коллектор-эмитер», и тем самым поглощаться транзистором:

18 — 12 = 6 вольт

Определяем потребную номинальную мощность транзистора:

6 * 4 = 24 ватт

При выборе типа транзистора необходимо учитывать, что паспортная (по справочнику) максимальная мощность транзистора должна быть не менее, чем в два — три раза больше номинальной мощности падающей на транзисторе. Это делается для того, чтобы обеспечить запас по мощности при различных бросках тока нагрузки (а следовательно и изменения падающей мощности). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

В нашем случае необходимо выбрать транзистор с паспортной мощностью (Рк) не менее:

24 * 2 = 48 ватт

Выбираете любой транзистор, удовлетворяющий этим условиям, с учётом, что чем паспортные параметры будут намного больше расчётных, тем меньше по размерам потребуется радиатор охлаждения (а может и вообще не нужен будет). Но при чрезмерном превышении этих параметров учитывайте тот факт, что чем больше выходная мощность транзистора, тем меньше его коэффициент передачи (h31), а это ухудшает коэффициент стабилизации в источнике питания.

В следующей статье мы рассмотрим компенсационный стабилизатор напряжения непрерывного действия. В нём используется принцип контроля выходного напряжения мостовой схемой. Он обладает меньшей пульсацией выходного напряжения, чем «эмиттерный повторитель», кроме того, он позволяет регулировать выходное напряжение в небольших пределах. На его основе будет рассчитана простая схема стабилизированного блока питания.

Ответы@Mail.Ru: что дает стойка стабилизатора?

Стабилизатор поперечной устойчивости вместе со стойками — один из самых важных элементов подвески. Ошибочно думать, что его выход из строя (в подавляющем большинстве случаев неисправности проявляются как раз в стойках, поскольку штанга стабилизатора — металлическая балка, ломающаяся крайне редко) никак не скажется на качестве движения. Наоборот, езда на машине с неработающими стойками может привести к серьезной аварии. Предназначение стабилизатора — обеспечение за счет своего внутреннего сопротивления уменьшения крена кузова и повышение устойчивости автомобиля в движении при воздействии боковых сил (на поворотах, виражах и т. д.) . Принцип действия до банальности элементарен. Когда машина заходит в поворот, упругие элементы подвески под действием центробежных сил по одному ее борту сжимаются, а по другому — растягиваются. Создается крен. В этот момент стабилизатор, вернее, его средняя часть, скручивается, стремясь приподнять автомобиль со стороны крена. С другой стороны он, наоборот, старается кузов опустить, сжимая упругий элемент подвески. Таким образом, транспортное средство выравнивается по отношению к плоскости дороги.

Схема стабилизатора напряжения - простой расчёт

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

На 1-м рисунке схема на транзисторе 2SC1061.

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

Схема включения стабилизаторов напряжения

(2 оценок, среднее: 5,00 из 5)

Компенсационный стабилизатор напряжения. Расчёт стабилизатора напря

В статье расскажем про компенсационный стабилизатор напряжения, о расчёте стабилизатора напряжения. Предоставим практические советы конструкторам. Нарисуем схему стабилизатора.

При проектировании источников питания электронной аппаратуры предъявляются высокие требования к стабильности питающего напряжения. Как медленные, так и быстрые колебания (нестабильности и пульсации) напряжения питания существенно изменяют режимы и параметры работы радиоэлектронных схем. Причинами нестабильности могут быть колебания напряжения и частоты питающей сети, изменения нагрузки, пульсации выпрямленного напряжения, колебания влажности окружающей среды. Например, для питания измерительных устройств, работающих с точностью 0,1%, требуется стабильность напряжения питания не хуже 0,01%.

Компенсационный стабилизатор

Различают компенсационные стабилизаторы напряжения непрерывного и импульсного действия. Стабилизаторы напряжения непрерывного действия представляют собой систему автоматического регулирования, в которой фактическое значение выходного напряжения сравнивается с заданным значением эталонного (опорного) напряжения. Возникающий при этом сигнал рассогласования усиливается и должен воздействовать на регулирующий элемент стабилизатора таким образом, чтобы выходное напряжение стремилось вернуться к заданному уровню. В качестве источника опорного напряжения обычно используют параметрический стабилизатор, работающий с малыми токами нагрузки, представляющий собой цепочку, состоящую из резистора и стабилитрона. Это было рассмотрено в предыдущей статье Стабилизаторы напряжения, их расчёт.

В зависимости от способа включения регулирующего элемента различают компенсационные стабилизаторы последовательного и параллельного типов.

Структурная схема компенсационного стабилизатора последовательного типа представлена на рис. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. Схему, состоящую из регулирующего элемента и сопротивления нагрузки можно представить как делитель напряжения, в котором определённая часть входного напряжения «падает» на сопротивлении нагрузки, а всё остальное напряжение – на регулирующем элементе. При этом, и все изменения входного напряжения отражаются не на нагрузке, а на регулирующем элементе.

Опорное стабилизированное напряжение формируется источником опорного напряжения ИОН. Схема сравнения СС сравнивает выходное напряжение Uн с опорным напряжением Uоп. Разностный сигнал рассогласования Uн — Uоп, формируемый схемой сравнения СС, поступает на вход усилителя постоянного тока У, усиливается и воздействует на регулирующий элемент РЭ.

Если в нагрузке оказывается напряжение Uн большее, чем опорное Uоп – имеет место положительный сигнал рассогласования (Uн — Uоп) > 0, тогда внутреннее сопротивление РЭ возрастает и падение напряжения Uрэ на нем увеличивается. Так как регулирующий элемент и нагрузка включены последовательно, то при увеличении Uрэ выходное напряжение уменьшается.

При уменьшении выходного напряжения Uн, отрицательном сигнале рассогласования (Uн — Uоп) < 0, наоборот, внутреннее сопротивление РЭ и падение напряжения на нем уменьшаются, что приводит к возрастанию выходного напряжения Uн.

Принципиальная схема компенсационного стабилизатора напряжения последовательного типа на транзисторах приведена на следующем рисунке. Для более простого понимания того, как работает схема, мы рассмотрим её работу поэлементно.

Источник опорного напряжения выполнен на резисторе Rб и стабилитроне VD. Как он работает и как рассчитывать элементы этой цепи, описывалось ранее в статье Стабилизаторы напряжения, их расчёт.

Схема сравнения выполнена по принципу измерительного моста. Это – типовая измерительная схема сравнения, которая довольно часто применяется в различных схемах, поэтому актуальна не только в стабилизаторах напряжения.

Рассмотрим измерительный мост более подробно. Для этого мы изобразим его отдельно от остальных элементов стабилизатора.

Источник опорного напряжения Rб-VD и делитель напряжения R1-R2-R3 подключены к выходу стабилизатора параллельно. Переменный резистор R2 для наглядности поделен на схеме на две половины – два постоянных резистора R2/1 и R2/2. Если к средним точкам этих цепочек подключить вольтметр, то он будет реагировать на разность напряжений, между этими точками. А если использовать вольтметр со шкалой, у которой нуль находится посередине, тогда наглядно будет видно в какой средней точке напряжение выше, а в какой ниже. Основное состояние измерительного моста, которое используется в стабилизаторе напряжения, это — явление баланса моста, состояние, при котором значение напряжения в средних точках равно.

Предположим, что сопротивление резисторов R1 и R3 равны, а «ползунок» резистора R2 находится в среднем положении. Тогда сопротивления плеч R1+R2/1 и R2/2+R3 равны. Это означает, что на выводе «ползунка» резистора R2 будет ровно половина находящегося на клеммах напряжения. Предположим, что мы подали на клеммы ровно 9 вольт, тогда в средней точке резисторов будет 4,5 вольта (ровно половина). Источник опорного напряжения мы поставим на напряжение стабилизации 4,5 вольта – равное значению средней точки делителя на резисторах R1, R2, R3. Поэтому, по причине отсутствия разности потенциалов в средних точках стрелка вольтметра будет стоять на нуле.

Если мы увеличим напряжение до 10 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение поднимется до 5 вольт, а на источнике опорного напряжения оно так и останется 4,5 вольта (стабилитрон не позволит увеличиться напряжению на своём кристале) и стрелка вольтметра отклонится влево на 0,5 вольта.

Если наоборот, мы уменьшим напряжение до 8 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение уменьшится до 4 вольт, а на источнике опорного напряжения оно по-прежнему останется 4,5 вольта и теперь, стрелка вольтметра отклонится вправо на 0,5 вольта.

А теперь вернёмся к схеме стабилизатора напряжения. В ней функцию вольтметра выполняет транзистор VT2, который в процессе работы схемы стабилизации используется в «рабочем» усилительном режиме (полуоткрытом состоянии). Роль регулирующего элемента в этой схеме стабилизатора играет транзистор VT1. Его задача – в случае нарушения баланса измерительного моста, определяемого базо-эмиттерным переходом, восстановить этот баланс путём изменения сопротивления перехода эмиттер-коллектор управляющего элемента, и как следствие — уменьшение, или увеличение выходного напряжения.

При увеличении Uвх, выходное напряжение возрастает по абсолютному значению, создавая отрицательный сигнал рассогласования напряжения Uэ62 на входе усилителя постоянного тока, выполненного на транзисторе VT2. Транзистор, подключенный к средним точкам измерительного моста «приоткрывается». Ток коллектора транзистора VT2 возрастает, а потенциал коллектора VT2 становится более положительным относительно потенциала земли. Напряжение эмиттер-база транзистора VT1 уменьшается, что приводит к возрастанию внутреннего сопротивления транзистора VT1 и падению напряжения на нем. Выходное напряжение при этом уменьшается, стремясь к прежнему значению.

При уменьшении входного напряжения Uвх наоборот, транзистор VT2 «призакрывается», что приводит к увеличению напряжения база-эмиттер транзистора VT1, в результате чего сопротивление транзистора уменьшается и выходное напряжение повышается, стремясь к номинальному напряжению стабилизации.

Обратите внимание, что на схемах изображалась «точка» подключения к какому то источнику напряжения Е0. Для повышения коэффициента стабилизации схемы резистор Rк, определяющий базовый ток регулирующего транзистора VT1, подключается к стабильному источнику напряжения – Е0. Если Е0 не стабилен, то его колебания передаются через резистор Rк на базу регулирующего транзистора VT1 и ухудшают коэффициент стабилизации схемы. Довольно часто встречаются радиолюбительские схемы стабилизаторов, в которых резистор Rк подключен напрямую ко входному контакту -Uвх. В результате этого, стабилизатор работает в качестве автоматического регулятора «среднего» выходного напряжения, и абсолютно не подавляет никакие пульсации сетевого напряжения.

Лучшим источником стабильного напряжения является гальванический элемент, но его использование в большинстве случаев – не оправдывает себя. В сложных устройствах с несколькими источниками стабилизированного питания часто для целей стабилизированного смещения одного более мощного стабилизатора используют выходное напряжение другого стабилизатора, но с меньшей нагрузкой.

Наиболее простой способ – использовать дополнительный источник стабильного опорного напряжения, как показано на рисунке. Для исключения кратковременных скачков напряжения стабилизации, которые могут быть вызваны бросками входного напряжения, или сопротивления нагрузки, параллельно стабилитрону добавлен конденсатор С. Практически постоянно в радиолюбительской практике упускается важность этого источника опорного напряжения. В простейшем случае, как я писал, резистор Rк подключается напрямую к -Uвх, без всяких стабилитронов. Выбирать Вам – допускать пульсацию, или нет. Я думаю три дополнительных радиоэлемента – резистор, стабилитрон и конденсатор в этой схеме стабилизатора не помешают.

Как и ранее, я не пишу сложные формулы радиолюбительских расчётов, которые отбивают желание вообще становиться радиолюбителями. Они мной применяются только тогда, когда их использование действительно необходимо. Кроме того, если Вы научитесь понимать их физический смысл, то Вы самостоятельно сможете применять их на практике для расчётов цепей.

Расчёт стабилизированного блока питания мы будем проводить с использованием конкретной схемы, которую мы сначала изобразим, соблюдая правила построения схем, а потом рассчитаем на основе предъявляемых к ней требований.

1. Прежде всего, обратите внимание, на то, что большинство блоков питания имеет минус на массе, поэтому мы так же выполняя условие – «минус на массе» изменим полярности диодов и конденсаторов, а кроме того — тип проводимости транзисторов с p-n-p на n-p-n.

2. Для повышения коэффициента стабилизации компенсационного стабилизатора в качестве регулирующего элемента мы будем использовать составной транзистор. Использование составного транзистора увеличивает коэффициент стабилизации на величину коэффициента усиления по току дополнительного транзистора, и на порядок увеличивает нагрузочную способность стабилизатора напряжения. Поэтому (см. схему) к ранее изученному стабилизатору, мы добавим этот транзистор VT3. Считаем, что каждый добавленный таким образом транзистор увеличивает нагрузочную способность в 10…20 раз, но не забываем, что основная часть мощности на него и «приложится». Поэтому чем мощнее транзистор, тем лучше.

3. Ток через делитель Iдел состоящий из R1,R2,R3 выбирают обычно на порядок меньше (в 10 раз), чем ток, протекающий по цепи Rб, VD1. Увеличение или уменьшение тока делителя за счет снижения, или повышения сопротивлений R1,R2,R3 нецелесообразно, так как приводит к существенному уменьшению КПД, или чувствительности схемы к изменению выходного напряжения и его пульсациям.

4. Резистор R2 предназначен для регулировки стабилизированного напряжения в небольших пределах. Пределы регулировок выходного напряжения такого стабилизатора ограничены параметрами стабилитрона – минимальным и максимальным током стабилизации. Как это выглядит практически, я затрону в процессе расчётов.

5. Напряжение стабилизации дополнительного источника опорного напряжения, используемого для смещения транзистора регулирующего элемента должно не менее, чем в 1,5 раза превышать значение выходного напряжения стабилизатора. Иначе силовыми транзисторами VT2 и VT3 «нечем будет управлять» — напряжение на эмиттерах будет превышать базовое, и ни о какой стабилизации речи не будет.

6. Предыдущее условие накладывает ограничения на нагрузочные способности стабилизатора потому, что разница входного и выходного напряжения стабилизатора помноженная на выходной ток, будет «падать» в виде рассеиваемой мощности на силовых транзисторах. Поэтому необходимо выбирать транзисторы способные выдерживать такую мощность – повторяется правило — чем мощнее транзистор, тем лучше. Но чем мощнее транзистор, тем меньше у него коэффициент передачи.

Исходные данные (допустим, к разрабатываемому ИП предъявлены такие требования):

— среднее выходное напряжение стабилизатора – 12 вольт;

— максимальный ток нагрузки стабилизатора – 2 ампера;

— используется трансформатор достаточной мощности, с выходным напряжением 25 вольт.

При расчётах сложных схем, обычно идут «с конца к началу», поэтому, предлагаю начать с расчёта схем опорного напряжения и сравнения.

1. Выберем стабилитрон измерительного моста Стабилитрон VD1 выбирается со значением напряжения стабилизации, равном половине выходного напряжения стабилизатора:

12в / 2 = 6 вольт

.

При этом условии обеспечивается наилучшая стабилизация. Но стабилитрон на такое напряжение в рознице отсутствует, поэтому выбираем стабилитрон, максимально близкий по напряжению стабилизации – КС156А, у которого Uст = 5,6 вольт, Iст = 10 мА.

2. Найдём резистор Rб:

На резисторе падает напряжение:

URб = Uвых – Uст = 12в – 5,6в = 6,4в

Зная падение напряжения и ток стабилизации, по закону Ома определяем сопротивление резистора:

Rб = URб / = 6,4в/0,01А = 640 Ом

Ближайшее значение сопротивления резистора по номинальному ряду — 620 Ом.

Мощность резистора находим из условия РRб = URб * Iст * 2 = 6,4в * 0,01А * 2 = 0,128 Вт

Если кто не знает, что в формуле обозначает цифра 2, поясню, это коэффициент запаса по мощности (чтобы резистор не грелся). Более подробно написано в статье Резистор . Ближайшее наибольшее значение мощности резистора по номинальному ряду – 0,125 Вт.

Таким образом, параметры Rб – 620 Ом на 0,125 Вт.

3. Определим возможные значения выходного напряжения стабилизатора, при которых стабилизация происходит.

Они ограничены предельными токами стабилитрона, стоящего в мостовой измерительной цепи.

а) Определим минимальное (регулируемое) напряжение стабилизации: По справочнику минимальный ток стабилизации КС156А = 3 мА, при этом токе значение выходного напряжения стабилизатора составит:

Uвых.min = Uст + (Iст.min * Rб) = 5,6 в + (0,003 * 620) = 7,46 вольт

б) Определим максимальное (регулируемое) напряжение стабилизации:

По справочнику максимальный предельный ток стабилизации КС156А = 55 мА. Это большой ток, при котором стабилитрон будет греться и нужны дополнительные меры защиты, поэтому ограничимся значением, в 2 раза превышающем номинальное — 20 мА. При этом токе значение выходного напряжения стабилизатора составит:

Uвых.max = Uст + (Iст.max * Rб) = 5,6 в + (0,02 * 620) = 18 вольт

Поскольку мощность прикладываемая к резистору возросла, для того, чтобы резистор Rб не сгорел от большой прикладываемой мощности, его мощность следует увеличить до значения:

РRб = URб * Iст * 2 = 12,4 в * 0,02 А * 2 = 0,5 Вт

Если Вы хотите, чтобы Ваш стабилизатор выдавал 18 вольт, то мощность резистора необходимо увеличить, но если Вы делаете стабилизатор на фиксированное напряжение (в данном случае 12 вольт), то этого можно не делать, удовлетворившись расчётом, приведённым в пункте 2.

4. Рассчитаем делитель R1,R2,R3:

Нам известно, что на стабилитроне КС156А падает – 5,6 вольта. А ещё мы знаем (см. статью Биполярный транзистор), что в режиме стабилизации, транзистор VT1 находится в «рабочей точке», это означает, что на его переходе база-эмиттер «падает» напряжение 0,65 вольта. А это в свою очередь означает, что на базе должно быть всегда 5,6 + 0,65 = 6,25 вольта относительно корпуса стабилизатора. База соединена с «ползунком» среднего регулировочного резистора, значит, это напряжение 6,25 вольта всегда присутствует на его «ползунке».

Исходя из этого, можно составить, систему уравнений с тремя неизвестными, но это Вас только запутает, поэтому мы пойдем по более простому, но практичному пути.

При максимальном напряжении стабилизации Uвых.max = 18 вольт, ползунок находится в нижнем по схеме положении, ток стабилизации Iст.max = 0,02 A, а ток делителя R1,R2,R3 в 10 раз меньше: Iцепи = 0,002 А , следовательно:

R3 = 6,25 / Iцепи = 6,25 / 0,002 = 3,125 кОм;R1 + R2 = (Uвых.max — UR3) / Iцепи = 11,75 / 0,002 = 5,875 кОм.

Суммарное сопротивление R1 + R2 + R3 = 5 875 + 3 125 = 9 кОм

При минимальном напряжении стабилизации Uвых.min = 7,46 вольта, ток делителя будет:

Iцепи = Uвых.min / (R1 + R2 + R3) = 7,46 / 9000 = 0,00083 А

найдем значение R1 = (Uвых.min – 6,25) / Iцепи = (7,46 – 6,25) / 0,00083 = 1,46 кОм,

отсюда значение R2 = 5,88 – 1,46 = 4,42 Ом,

округлим значения резисторов до значений номинального ряда: R1 = 1,5 кОм, R2 = 4,3 кОм (переменный), R3 = 3 кОм

5. Рассчитаем второй источник опорного напряжения и смещения VT2.

В качестве стабилитрона выбираем Д816А, у которого Uст = 22 вольта, Iст = 10 мА.

Найдём Rсм.

Выходное напряжение трансформатора после выпрямления и сглаживания фильтром = 25 вольт, тогда Rсм = (Uтр. — Uст) / Iст = 25 – 22 / 0,01А = 300 Ом.

Мощность резистора РRсм = URсм / Iст = 3 *0,01 = 0,03 Вт, ближайшая из номинального ряда — 0,125 Вт

Для стабильной работы цепи опорного напряжения Rсм VD2, необходимо, чтобы Rк не оказывал на эту цепь шунтирующего действия. Поэтому ток Rк должен быть не менее, чем в 2 раза меньше тока стабилитрона. Кроме того, на нём падает разность между входным и выходным напряжением: URк = Uтр. — Uвых. = 25 – 12 = 13 вольт,

отсюда: Rк = URк / (Iст/2) = 13 / 0,005 = 2,7 кОм.

Мощность РRк = URк * Iст / 2 = 13 *0,005 = 0,0325 Вт, ближайший 0,125 Вт.

6. Наконец дело дошло до транзисторов.

В качестве VT1 подойдёт транзистор КТ315Г. Он удовлетворяет требованиям:

— достаточно высокий коэффициент усиления (передачи) h31Э = 50…350;

— допустимое напряжение коллектор-эмиттер – 35 вольт.

В качестве VT2 подойдёт транзистор КТ815 с любым буквенным индексом. Коэффициент передачи h31Э = 40 – 70 , обеспечивает усиление тока резистора Rк с 5 мА до 250 мА;

В качестве VT3 попробуем взять не то, что надо искать, а то, что есть — например КТ809А. Коэффициент передачи h31Э = 15…100 , что обеспечивает усиление тока с 250 мА до 3,7 А, но максимальный ток коллектора – 3 А это по справочнику – предел, нет «запаса прочности», поэтому ставим два транзистора в параллель. При выходном напряжении = 12 вольт и токе 2 ампера, на них должно падать 13 вольт, таким образом, общая мощность рассеивания транзисторов: РVT3 = UVT3 * I VT3 = 2 * 13 = 26 Вт.

Это вполне приемлемое значение. Для выравнивания мощностей на транзисторах придётся использовать два резистора в эмитерных цепях выходных транзисторов. 0,05…1 Ом с мощностью по 2 Вт.

7. Остался один резистор Rэ. Его расчет приведён в предыдущей статье Простейшие стабилизаторы напряжения. Rэ = 0,65 / 2 * 50 = 16 Ом,

где 0,65 – падение на переходе база-эмиттер, 2 – номинальный ток нагрузки = 2 ампер), 50 — усреднённое значение коэффициента передачи транзистора.

1. При выборе стабилитронов возможно последовательное их соединение, например два КС156А (по 5,6 вольта) можно соединить последовательно для получения стабилитрона на напряжение стабилизации 11,2 вольта;

2. Для возможности регулировки выходного напряжения в более широких пределах цепочку источника опорного напряжения R3, VD6 (см. схему) подключают не к выходу, а на вход стабилизатора с применением цепей сглаживания (по аналогии с R1, VD5 и С2). Естественно, необходимо пересчитать резистор R3. Как это делается описано в этой статье и предыдущей статье Простейшие стабилизаторы напряжения. В результате этого, входное напряжение ИОН не зависит от выходного напряжения, поэтому ток стабилизации номинальный и постоянен. Другой вариант расширения диапазона стабилизируемых напряжений — использование в качестве одного резистора Rб – галентного переключателя с несколькими резисторами;

3. Для повышения нагрузочных свойств стабилизатора, и как следствие повышения надёжности рекомендую вместо двух КТ809А поставить один составной КТ827А без резисторов R4 – R6.

4. Никогда не брезгуйте рассчитать мощность резисторов, иначе это может Вам выйти кучей сгоревших дорогих элементов;

5. В приведённой схеме стабилизатора имеется защита по первичной обмотке трансформатора, а во вторичных цепях защита отсутствует. В простейшем случае поставьте на выходе стабилизатора двух-трехватный предохранитель, но лучше сделать более интеллектуальную схему защиты;

6. В этой статье указаны простейшие правила и условия, соблюдение которых позволит проектировать и собирать действующие стабилизаторы. И тогда у Вас не будет возникать вопросов типа тех, на которых и существует половина интернет-Форумов: Я вместо конденсатора поставил резистор, а он как конденсатор работать не хочет!? Или: Почему резистор, предназначенный в схеме для выполнения одной функции, не выполняет другую функцию?

Расчёт с первого взгляда выглядит нудноватым, но это самый простейший расчёт. Поняв принципы работы и расчёта транзисторных каскадов, Вы сможете конструировать и рассчитывать более сложные схемы.


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости