С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Система питания инжекторного двигателя


Устройство системы питания автомобиля

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя и электронная система питания.

1.Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

1.1.Устройство системы питания инжектора:

1. Электробензонасос – устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр – предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы – служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками – конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива – предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

1.1.1.Как работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси. Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается – смесь обогащается, если уменьшается – смесь обедняется.

Система питания инжектора двигателя

1794 Просмотров

Содержание

  • 1 Предыстория
  • 2 Схема устройства
  • 3 Подводя итоги

Современный автомобиль имеет достаточно сложное техническое устройство. Большое количество применяемых технологий и электроники позволили добиться куда более приемлемых технических характеристик, чем у автомобилей прошлого. Система питания инжекторного двигателя представляет наибольшую трудность для тех, кто так или иначе впервые столкнулся с необходимостью подробного изучения устройства машины. Сегодня мы проведем краткий ликбез и расскажем, чем хороша инжекторная система подачи топлива, и почему именно она поставляется на большинство современных автомобилей.

Предыстория

Инжекторные моторы существовали не всегда. Еще десяток лет назад рынок занимали так называемые карбюраторные двигатели, которые работали за счет физических законов давления и имели достаточно примитивный принцип работы.

Так, топливный насос подает топливо под давлением в корпус карбюратора через систему так называемых форсунок. Здесь же, за счет разницы давлений насоса и окружающей среды, засасывается воздух в количестве, которое определяет дроссельная заслонка, управляемая вручную. Смесь под давлением подается во впускной коллектор и, затем, непосредственно в цилиндры двигателя.

Подобный принцип работы, основанный на разности давлений, имеет единственное неоспоримое преимущество — простоту и дешевизну ремонта и настройки карбюраторной системы. Тем не менее, имеется также ряд недостатков, который потребовал изобретение более совершенного устройства.

Так, в холодное время года затруднителен пуск двигателя, как таковой. Карбюратору не удается подавать в систему топливо в достаточном количестве, поскольку насос работает недостаточно эффективно, а необходимое давление в таких условиях обеспечить невозможно.

Кроме того, насос карбюраторного двигателя, как и сам карбюратор, имеют крайне низкую степень надежности, а постоянная эксплуатация быстро приводит к появлению нагара и необходимости постоянной чистки и настройки системы.

Такое положение дел привело к тому, что на автомобили постепенно начали устанавливать инновационные системы высокого давления — инжекторы. Главное преимущество таких систем состоит в том, что пропорция воздуха и топлива в подаваемой смеси контролируется электроникой автоматически.

Здесь появилось электронное управление насосом. Таким образом, водителю уже не приходится управлять дроссельной заслонкой вручную, за него все делают приводы и датчики. Также решилась проблема и с затрудненным зимним впуском – инжектор требует меньше усилий от насоса и позволяет устанавливать механизмы меньшей мощности.

Схема устройства

Основную составляющую любого инжекторного двигателя представляет система датчиков, которые анализируют всевозможные данные как о самом моторе и насосе, так и показателях окружающей среды.

Так, электронный блок управления двигателем осуществляет принятие львиной доли решений относительно режима работы насоса и положения дроссельной заслонки. В этом ему и помогают датчики, которые были упомянуты выше.

Датчик массового расхода и давления воздуха проверяет, какое количество воздуха на данный момент используется для приготовления рабочей смеси. Датчик температуры охлаждающей жидкости позволяет определить, не перегрелся ли мотор, и не стоит ли уменьшить количество подаваемой в цилиндры смеси.

Датчик положения дроссельной заслонки определяет, насколько эффективно расходуется смесь и в каком количестве подается топливо для достижения той или иной скорости. К слову, датчик скорости — это именно то устройство, которое позволяет это определить наиболее точно.

Принцип работы электрического насоса высокого давления заключается в постоянном контроле со стороны ЭБУ. При получении определенного сигнала устройство может подавать больше или меньше бензина в систему, что позволяет добиться более рационального расхода топлива в целом.

Кроме того, в функционировании инжектора также участвуют датчики положения коленчатого вала и фаз, чтобы топливо, поступающее в камеру сгорания, также расходовалось наиболее рациональным образом.

Функционирует система достаточно просто. Сначала все датчики начинают анализ текущего режима работы двигателя. При помощи датчиков анализируется температура охлаждающей жидкости, скорость, количество оборотов и прочие жизненно важные данные. Затем все сигналы поступают в ЭБУ, который осуществляет принятие решений относительно изменения положения дроссельной заслонки.

Затем топливо смешивается в заданной ЭБУ пропорции и поступает в форсунку, которая и осуществляет впрыск. Таким образом, система постоянно находится под автоматизированным контролем, и ее характеристики постоянно изменяются, достигая при этом наибольшей эффективности.

Инжекторная система является наиболее современной и проработанной на сегодняшний день. По сравнению с устаревшим карбюратором, ее не нужно постоянно регулировать и чистить. Кроме того, большое количество электроники позволяет достичь более рационального использования топлива, повысить мощность и динамические показатели машины, а также повысить ресурс мотора и сократить расходы на его обслуживание.

Система питания инжекторного двигателя и её особенности

Научный прогресс неумолимо движется вперед, и главная его задача на сегодняшний день – экономия энергии. Существенно снизить токсичность и сэкономить на топливе позволяет система питания инжекторного двигателя, которой сегодня оснащают все современные модели. Ранее же в качестве системы питания использовались карбюраторы, которые большое количество топлива расходовали напрасно.

Ключевым звеном в системе инжекторной подачи топлива лежат форсунки, благодаря ним появилась возможность впрыскивать топливо непосредственно в цилиндры. Любая такая форсунка – это электроклапан, имеющий сопло. Когда нужно подать в двигатель топливо, электроника открывает этот клапан и топливо, проходя через сопло под большим давлением, измельчается до состояния пара.

Также инжекторного двигателя просто не существовало бы без электроники. Нынешними двигателями управляет компьютер, который точно знает, в какое время и какое количество топлива нужно подать в цилиндр. Также электроника сама вычисляет, когда лучше всего это топливо поджечь, для достижения максимального КПД.

Устройство инжекторного двигателя

В качестве основы для инжекторного двигателя был взять обычный четырехтактный двигатель. Различия между ними заключаются лишь в системе питания и поджога топлива.

Весь инжекторный двигатель обвешан датчиками, это и датчик температуры двигателя, датчик температуры входящего воздуха, датчик температуры исходящих газов, датчик положения коленвала и многие другие. Все эти датчики – «глаза и уши» инжекторной системы. Благодаря ним компьютер считывает данные со всего двигателя и на основе них решает, сколько топлива подавать.

Настраивать холостые обороты, качество смеси, момент поджога отверткой и гаечным ключом в инжекторе невозможно. Все эти настройки осуществляются исключительно в электронном виде, программно. То есть к компьютеру авто подключается другой компьютер и с помощью специальной программы происходит настройка оборудования.

Удобна инжекторная система тем, что она сразу же сообщает о поломках. Это позволяет оперативно принять меры и постоянно держать авто в идеальном состоянии.

Устройство системы питания

Система питания инжектора состоит из таких элементов как: бензобак, топливные фильтры, насос высокого давления и форсунки. Сперва топливо через систему фильтрации закачивается в насос высокого давления и придерживается там постоянно в таком состоянии. Удерживает это давление форсунка, которая в закрытом состоянии не пропускает питание в цилиндры. В определенный момент форсунка открывается, и топливо начинает поступать в двигатель.

Открывается форсунка на десятые или даже сотые части минуты, при этом, чем дольше открыта форсунка, тем больше топлива она подает в цилиндр. Длительностью открытия форсунки управляет электроника.

Еще любой бензиновый двигатель не смог бы нормально работать без такой вещи как дроссельная заслонка. В инжекторе она тоже есть и нужна для того, чтобы контролировать количество воздуха, который поступает в двигатель. На такой заслонке тоже имеется датчик, благодаря нему система получает информацию о том, что водитель хочет ехать быстрее и что нужно подать больше топлива.

Вообще система питания подводит редко, самой частой причиной поломки инжекторного двигателя становится выход из строя одного или нескольких датчиков. Так, например, если выйдет из строя датчик количества воздуха, система попросту не будет знать, сколько топлива подавать в систему. В связи с этим датчики меняют сразу же после оговоренного изготовителем пробега.

Дизельная, инжекторная, карбюраторная системы питания ДВС

Двигатель внутреннего сгорания (далее – ДВС) не зря считается сердцем автомобиля. Именно производимый им крутящий момент является первоисточником всех механических и электрических процессов, происходящих в транспортном средстве. Однако мотор не может существовать обособленно от обслуживающих его систем – смазки, питания, охлаждения и выпуска газов. Наиболее значимую роль при функционировании ДВС играет система питания двигателя (или топливная система).

Функции, устройство и принцип функционирования

Каждый автомобиль характеризуется таким понятием, как «запас хода». Он определяется расстоянием, которое автомобиль способен преодолеть на полном топливном баке без дополнительных заправок. На данный показатель оказывают влияние самые различные факторы: сезонные, погодные и природные условия движения, характер дорожного покрытия, степень загруженности автомобиля, индивидуальные особенности водителя при управлении транспортным средством и т.д.). Однако главенствующую роль в определении «аппетита» автомобиля играет система питания и ее правильная работа. Система питания выполняет функции:

  1. подачи топлива, его очистки и хранения;
  2. очистки воздуха;
  3. приготовления специальной горючей смеси;
  4. подачи смеси в цилиндры ДВС.

Классическая система питания автомобиля состоит из следующих структурных элементов:

  • топливного бака, предназначенного для хранения горючего;
  • топливного насоса, выполняющего функции создания давления в системе и принудительной подачи топлива;
  • топливопроводов – специальных металлических трубок и резиновых шлангов для транспортировки горючего из топливного бака к ДВС (а излишков топлива – в обратном направлении);
  • фильтра (или фильтров) очистки топлива;
  • воздушного фильтра (для очистки воздуха от примесей);
  • устройства приготовления топливно-воздушной смеси.

Система питания имеет достаточно простой принцип работы: под воздействием специального топливного насоса горючее из бака, предварительно пройдя процедуру очистки топливным фильтром, по топливопроводам подается к устройству, предназначенному для приготовления топливно-воздушной смеси. И уже затем смесь подается в цилиндры двигателя.

Варианты системы питания

Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности. Вид топлива является одним из критериев классификации систем питания ДВС.

В этой связи выделяют силовые агрегаты:

  1. бензиновые;
  2. дизельные;
  3. основанные на газообразном топливе.

Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).

Карбюратор

Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:

  • поплавковую камеру и поплавок;
  • распылитель, диффузор и смесительную камеру;
  • воздушную и дроссельную заслонки;
  • топливные и воздушные каналы с соответствующими жиклерами.

Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания. Таким образом, система питания карбюраторного двигателя представляет собой преимущественно механический способ приготовления топливно-воздушной смеси.

Впрыск топлива

Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).

Принцип работы указанной системы питания сводится к распылению топлива через форсунки под давлением, создаваемым топливным насосом. Качество смеси варьируется в зависимости от режима работы двигателя и контролируется блоком управления. Важным компонентом такой системы является форсунка. Типология инжекторных двигателей основывается именно на количестве используемых форсунок и места их расположения.

Так, специалисты склонны выделять следующие варианты инжектора:

  1. с распределенным впрыском;
  2. с центральным впрыском.

Система распределенного впрыска предполагает использование форсунок по количеству цилиндров двигателя, где каждый цилиндр обслуживает собственная форсунка, участвующая в подготовке горючей смеси. Система центрального впрыска располагает только одной форсункой на все цилиндры, расположенной в коллекторе.

Особенности дизельного двигателя

Как бы особняком стоит принцип действия, на котором основывается система питания дизельного двигателя. Здесь топливо впрыскивается непосредственно в цилиндры в распыленном виде, где и происходит процесс смесеобразования (смешивания с воздухом) с последующим воспламенением от сжатия горючей смеси поршнем. В зависимости от способа впрыска топлива, дизельный силовой агрегат представлен тремя основными вариантами:

  • с непосредственным впрыском;
  • с вихрекамерным впрыском;
  • с предкамерным впрыском.

Вихрекамерный и предкамерный варианты предполагают впрыск топлива в специальную предварительную камеру цилиндра, где оно частично воспламеняется, а затем перемещается в основную камеру или собственно цилиндр. Здесь горючее, смешиваясь с воздухом, окончательно сгорает. Непосредственный же впрыск предполагает доставку топлива сразу же в камеру сгорания с последующим его смешиванием с воздухом и т.д. Еще одна особенность, которой отличается система питания дизельного двигателя, заключается в принципе возгорания горючей смеси. Это происходит не от свечи зажигания (как у бензинового двигателя), а от давления, создаваемого поршнем цилиндра, то есть путем самовоспламенения. Иными словами, в этом случае нет необходимости применять свечи зажигания.

Однако холодный двигатель не сможет обеспечить должный уровень температуры, требуемый для воспламенения смеси. И использованием свечей накаливания позволит осуществить необходимый подогрев камер сгорания.

Режимы работы системы питания

В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.

  1. Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
  2. Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
  3. Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
  4. Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
  5. Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).

Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.

Неисправности и сервисное обслуживание

В процессе эксплуатации транспортного средства топливная система автомобиля испытывает нагрузки, приводящие к ее нестабильному функционированию или выходу из строя. Наиболее распространенными считаются следующие неисправности.

Недостаточное поступление (или отсутствие поступления) горючего в цилиндры двигателя

Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.

Потеря мощности ДВС

Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.

Утечка горючего

Утечка горючего – явление весьма опасное и категорически не допустимое. Данная неисправность включена в «Перечень неисправностей…», с которыми запрещается движение автомобиля. Причины проблем кроются в потере герметичности узлами и агрегатами топливной системы. Ликвидация неисправности заключается либо в замене поврежденных элементов системы, либо в подтягивании креплений топливопроводов.

Таким образом, система питания является важным элементом ДВС современного автомобиля и отвечает за своевременную и бесперебойную подачу топлива к силовому агрегату.


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости