С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Строение подвески автомобиля


Подвески автомобиля - типы подвесок, назначение, устройство

Есть кузов и есть колеса. Возникает вопрос: как подсоединить колеса к кузову, чтобы была возможность управлять автомобилем, передавать непрерывно на ведущие колеса тягу от двигателя и в то же время комфортно преодолевать все неровности дорог с различными покрытиями и без этих самых покрытий? При этом связь колес с кузовом должна быть достаточно жесткой, чтобы автомобиль при выполнении каких-либо маневров просто-напросто не перевернулся. Ответ прост – установить колеса на промежуточное звено. В качестве такого звена используют подвеску.

Элементы подвески должны иметь как можно меньший вес и обеспечивать максимальную изоляцию от дорожных шумов. Помимо этого, следует отметить, что подвеска передает на кузов силы, возникающие при контакте колеса с дорогой, поэтому ее проектируют таким образом, что она обладает повышенной прочностью и долговечностью (смотрите рисунок 6.1).

Рисунок 6.1 Силы, действующие на колесо при его движении по дороге.

В связи с высокими требованиями, предъявляемыми к подвеске, каждый из ее элементов должен проектироваться по определенным критериям, а именно: применяемые шарниры должны легко поворачиваться, но в то же время быть достаточно жесткими и вместе с тем обеспечивать шумоизоляцию кузова, рычаги должны передавать силы, возникающие при работе подвески во всех направлениях, а также воспринимать усилия, которые возникают при торможении и наборе скорости; при этом они не должны быть слишком тяжелыми или дорогими в изготовлении.

Устройство подвески

 Составные части

Любая, какой бы она ни была, подвеска должна включать в себя следующие элементы:

  • направляющие/связывающие элементы (рычаги, штанги);
  • демпфирующие элементы (амортизаторы);
  • упругие элементы (пружины, пневматические подушки).

О каждом из этих элементов мы поговорим ниже, так что не пугайтесь.

 Классификация подвесок

Для начала давайте рассмотрим классификацию существующих типов подвесок, которые применяются на современных автомобилях. Итак, подвеска может быть зависимой и независимой. При использовании зависимой подвески, колеса одной оси автомобиля связаны, то есть при перемещении правого колеса начнет изменять свое положение и левое колесо, как это наглядно показано на рисунке 6.2. Если же подвеска независимая, то каждое колесо подсоединено к автомобилю отдельно (рисунок 6.3).

Подвески также классифицируют по количеству и расположению рычагов. Так, если в конструкции два рычага, то и подвеска называется двухрычажной. Если рычагов более двух, то подвеска — многорычажная. Если два рычага, к примеру, будут расположены поперек продольной оси автомобиля, то в названии появится дополнение — «с поперечным расположением рычагов». Однако конструкций огромное множество, потому рычаги могут располагаться и вдоль продольной оси автомобиля, тогда в характеристиках напишут: «с продольным расположением рычагов». А если не так и не этак, а под определенным углом к оси автомобиля, то говорят, что подвеска с «косыми рычагами».

Интересно Нельзя сказать, какая из подвесок лучше или хуже, все зависит от назначения автомобиля. Если это грузовик или самый брутальный внедорожник, то для простоты, жесткости и надежности конструкции незаменимой будет зависимая подвеска. Если же это легковой автомобиль, главными качествами которого являются комфорт и управляемость, то нет ничего лучше, чем подвешенные по отдельности колеса.

Рисунок 6.2 Зависимая подвеска.

Рисунок 6.3 Независимая подвеска.

Рисунок 6.4 Пример пружинной подвески на двух поперечных рычагах.

Подвески классифицируются и по типу применяемого демпфирующего элемента — амортизатора. Амортизаторы могут быть телескопическими (напоминают удочку «телескоп» или подзорную трубу), как на всех современных автомобилях, или рычажными, которых сейчас при всем желании не найдешь.

И последний признак, по которому подвески относят к разным классам, — это тип применяемого упругого элемента. Это может быть рессора, витая пружина, торсион (представляет собой стержень, один конец которого закреплен и никак не двигается на кузове, а второй конец подсоединен к рычагу подвески), пневматический элемент (основанный на способности воздуха сжиматься) или гидропневматический элемент (когда воздух выступает дуэтом с гидравлической жидкостью).

Итак, подведем итоги. Подвески различают по следующим признакам:

  • по конструкции: зависимая, независимая;
  • по количеству и расположению рычагов: однорычажная, двухрычажная, многорычажная, с поперечным, продольным и косым расположением рычагов;
  • по типу демпфирующего элемента: с телескопическим или рычажным амортизатором;
  • по типу упругого элемента: рессорная, пружинная, торсионная, пневматическая, гидропневматическая.

В дополнение ко всему вышесказанному следует отметить, что подвески также различают и по управляемости, то есть по степени контролируемости состояния подвески: активные, полуактивные и пассивные.

Примечание К активным относятся подвески, в которых может регулироваться жесткость амортизаторов, дорожный просвет, жесткость стабилизатора поперечной устойчивости. Управление такой подвеской может быть как полностью автоматическим, так и с возможностью ручного контроля. Полуактивные — это подвески, возможности управления которыми ограничены корректировкой высоты дорожного просвета.

Пассивные (неактивные) – это обычные подвески, выполняющие свою роль в чистом виде.

Хочется еще сказать о подвесках с электронно-управляемыми амортизаторами, которые способны изменять свою жесткость в зависимости от дорожных условий. Наполнены данные амортизаторы не обычной, а специальной жидкостью, которая под воздействием электрического поля может изменять свою вязкость. Если упрощенно представить принцип действия, то получится следующее: когда тока нет, автомобиль очень мягко проезжает по всем неровностям, а после подведения тока по неровностям ехать будет не очень приятно, зато станет очень приятно управлять автомобилем на скоростных трассах и в поворотах.

 Поворотный кулак и ступица колеса

 Поворотный кулак

Поворотный кулак является связующим звеном между рычагами подвески и колесом. Схематическое изображение этой детали приведено на рисунке 6.4. В общем случае такую деталь называют цапфой. Однако, если цапфа установлена на подвеске с управляемыми колесами, то она называется поворотным кулаком. Если колеса не управляемые, то остается название «цапфа».

Если поворотный, значит поворачивается, участвует в процессе изменения направления движения. Именно к поворотному кулаку крепятся элементы рулевой трапеции или рулевые тяги (об этих элементах подробно описано в главе «Рулевое управление»). Поворотный кулак — массивная деталь, так как воспринимает все удары и вибрации от дороги.

Конструкция поворотных кулаков зависит от типа привода автомобиля. Так, если привод комбинированный (когда колеса и управляемые, и тяговые одновременно, что характерно для переднеприводных автомобилей), то поворотный кулак будет иметь сквозное отверстие для внешней части приводного вала, как показано на рисунке 6.4. Если же колеса только управляемые, то поворотный кулак будет иметь опорную ось с конусным сечением, как, например, показано на рисунке 6.7.

 Ступица колеса

Ступица колеса (показана на рисунке 6.4) является связующим звеном между колесом и поворотным кулаком/цапфой. Поворотный кулак только передает усилия на элементы подвески, сам же не вращается. Для обеспечения свободного вращения колеса необходима ступица. На ступицу устанавливается тормозной диск (или тормозной барабан, о которых подробно сказано в главе «Тормозная система».), к ней же крепится колесо, а ступица, в свою очередь, установлена в поворотный кулак в случае, показанном на рисунке 6.4, на подшипниках, обеспечивающих плавное вращение колеса.

Примечание Тормозной диск конструктивно может быть выполнен как одно целое со ступицей колеса.

В зависимости от конструкции подшипники ступицы могут быть роликовыми или шариковыми.

Полезно знать Всегда после снятия и установки ступицы или замены подшипников необходимо производить регулировку натяга (что это, смотрите в примечании ниже) подшипников ступицы.

Примечание Если простым языком, то натяг — это усилие, с которым сжали подшипники ступицы при затягивании гайки крепления. Величина натяга влияет на силу сопротивления вращению колеса. Каждый производитель дает свои рекомендации по поводу величины усилия сопротивления вращению колеса. Поэтому при выполнении ремонтных работ, связанных со снятием ступицы, всегда интересуйтесь, выполняли или нет регулировку натяга подшипника ступицы колеса.

 Направляющие/связывающие элементы

С помощью направляющих и связывающих элементов колесо крепится к кузову или подрамнику. Эти элементы крепления разделяются на рычаги и штанги. Штанга — это пустотелый профиль, обычно круглого сечения, реже — квадратного. По сути, это просто трубка с приваренными к обоим концам проушинами для установки в них резиновых втулок, с помощью которых выполняется крепление к кузову и поворотному кулаку или цапфе. Рычаги — конструктивно более сложные элементы. Они могут быть сварены из трубок (такая конструкция применяется, в основном, в спортивных автомобилях), отлиты, например, из алюминиевого сплава (чтобы были легче) или отштампованы из листового металла (чтобы были дешевле). Количество и расположение рычагов влияют на плавность хода и управляемость автомобиля.

 Подвеска Мак-Ферсона

Пожалуй, одна из самых распространенных в настоящее время конструкций подвесок — со стойкой Мак-Ферсона (рисунок 6.5), она же «свеча» (самый яркий пример — это передняя подвеска у ВАЗ 2109 и ему подобных). Она отличается простотой конструкции, дешевизной, ремонтопригодностью (это значит, ремонтировать ее будет несложно) и относительной комфортностью. Так называемая амортизаторная стойка сверху крепится к кузову и имеет возможность вращаться в опоре, а снизу — к поворотному кулаку. Поворотный кулак, в свою очередь, подсоединен к нижнему поперечному рычагу подвески, который соединен с кузовом — все, кольцо сомкнулось. Иногда для придания дополнительной жесткости в конструкцию вводят продольную тягу, подсоединяя ее к поперечному рычагу (снова, как пример, ВАЗ 2109). На стойке есть плечо, к которому крепится рулевая тяга. Так, при управлении автомобилем вращается вся стойка, поворачивая колесо, не прекращая сжиматься и растягиваться, преодолевая неровности дорожного покрытия. Но следует обратить внимание и на недостатки однорычажной (а в описанном выше случае она именно однорычажная) подвески. Это «клевки» автомобиля при торможении и небольшая энергоемкость подвески.

Рисунок 6.5 Подвеска со стойкой МакФерсон.

Примечание Под «клевком» понимают следующее: при интенсивном торможении вес автомобиля смещается в сторону передка, из-за этого передняя часть проседает, а после остановки резко возвращается в исходное положение, вот это характерное движение на грани встряски и называют «клевком». Энергоемкость подвески – это прочность всей конструкции, способность сопротивляться всем ударам и моментам, возникающим при этих ударах без пробоев.

Пробой подвески – замыкание, контакт металлических элементов подвески друг с другом с резко возрастающей ударной нагрузкой — обычно при наезде на дорожное препятствие внушительных размеров заявляет о себе характерным звонким металлическим звуком со стороны опоры (или опор) подвески.

 Подвеска на двух поперечных рычагах

Чтобы избавиться от «клевков», улучшить управляемость и повысить энергоемкость, применяют одну из самых старых конструкций подвески, которая до наших времен дошла со значительными преобразованиями – подвеску на двух поперечных рычагах (пример которой приведен на рисунке 6.6).

Рисунок 6.6 Передняя подвеска на двух поперечных рычагах с амортизаторной стойкой.

В данной конструкции присутствует рычаг опорный (нижний) и рычаг направляющий (верхний), которые крепятся к поворотному кулаку. На опорный рычаг установлена нижняя часть амортизаторной стойки либо же отдельно пружина и отдельно амортизатор. Верхний рычаг выполняет функцию направления движения колеса в вертикальной плоскости, минимизируя его отклонения от вертикали. То, как установлены рычаги друг относительно друга, имеет непосредственное влияние на поведение автомобиля во время его движения. Обратите внимание на рисунок 6.6. Здесь верхний рычаг максимально отведен от нижнего рычага вверх. Чтобы уменьшить воздействие усилий на кузов автомобиля при работе подвески, пришлось удлинить поворотный кулак. К тому же, этот рычаг установлен под определенным углом к горизонтальной оси автомобиля во избежание пресловутых «клевков». Суть остается та же, а внешний вид, геометрические и кинематические параметры изменяются.

Примечание Несмотря на все достоинства, один очень существенный недостаток в данной конструкции все же существует — это отклонение колеса от вертикальной оси при работе подвески. Решение вроде бы есть – удлинение рычагов, однако это хорошо, если автомобиль рамный, а вот если кузов несущий, то удлинять некуда — дальше моторный отсек. Вот и подходят к решению нестандартно: нижний рычаг стараются сделать как можно длиннее, а верхний установить как можно дальше от нижнего.

Следует отметить тот факт, что, если пружина и амортизатор или амортизаторная стойка своим нижним концом крепятся к верхнему рычагу (как в случае, изображенном на рисунке 6.7), то опорным становится именно верхний рычаг, нижний в таком случае переходит в разряд направляющих.

Рисунок 6.7 Схема подвески автомобиля Ford Mustang 1968 г.в.

 Многорычажные подвески

Когда ресурсы по развитию какого-либо одного плана решения проблемы исчерпываются, а цели не достигнуты, конструкцию приходится усложнять, несмотря на увеличение стоимости. Именно по такому пути пошли конструкторы при разработке многорычажной подвески. Да, она получилась дороже двух- или однорычажной, однако по итогу получили практически идеальное перемещение колеса — без отклонений в вертикальной плоскости, отсутствие эффекта подруливания при прохождении поворотов (об этом ниже) и стабильность.

 Задняя полузависимая подвеска

Примечание Практически все схемы, описанные выше, могут применяться и в конструкции задней подвески.

Это одно из самых простых, дешевых и надежных решений для задней подвески, однако не лишенное многих недостатков. Суть конструкции состоит в том, что два продольных рычага, на которые опираются пружины и амортизаторы, соединили балкой, как показано на рисунке 6.8. Частично подвеска получилась зависимой, поскольку колеса связаны между собой, однако за счет свойства балки колеса имеют возможность перемещаться друг относительно друга.

Рисунок 6.8 Пример задней полузависимой подвески.

 Демпфирующие элементы

Демпфирующие элементы — это элементы подвески, призванные гасить колебания подвески при движении автомобиля. А зачем гасить колебания? Упругий элемент подвески, каким бы он ни был, призван сводить на нет все ударные нагрузки, возникающие при наезде колеса на препятствия на дороге. Но будь то пружина или воздух в пневмоподушке, после сжатия или разжатия упругого элемента сразу последует возврат в исходное положение. Сожмите в руках любую пружинку, а потом отпустите ее, и она полетит настолько далеко, насколько позволят ей силы, возникшие при разжатии. Еще пример: возьмите обычный медицинский шприц, наберите в него чистого воздуха, зажмите выходное отверстие и попробуйте переместить поршень — он переместится, но до определенного момента (пока у вас сил хватит сжимать воздух), после отпускания штока воздух начнет расширяться, возвращая поршень в исходное положение. Так и в автомобиле: при наезде автомобиля на какое-либо препятствие пружина в подвеске сожмется, но потом под действием упругих сил начнет разжиматься. Поскольку автомобиль имеет определенную массу, то пружина, распрямляясь, вынуждена будет преодолевать инерцию автомобиля, что будет выражаться покачиванием с постепенным затуханием колебаний. Ввиду постоянных разнонаправленных перемещений подвески такое раскачивание недопустимо, так как в определенный момент может наступить резонанс, что в конечном итоге просто-напросто разрушит подвеску частично или полностью. Чтобы не допустить таких колебаний, в конструкцию подвески внедрили еще один элемент — амортизатор.

Принцип работы амортизатора прост. Попробуем объяснить это на примере того же шприца. Но в этот раз будем набирать в него, к примеру, воду. Скорость набора и слива жидкости в данном случае ограничена вязкостью воды и пропускной возможностью отверстия шприца.

В подвеске объединили амортизатор с пружиной (или другим упругим элементом) и получили отличный «механизм», в котором один элемент не позволяет раскачиваться, а второй воспринимает все нагрузки.

Ниже рассмотрим демпфирующие элементы подвески на примере телескопического амортизатора.

Самыми распространенными типами демпферов на легковых автомобилях являются двухтрубные и однотрубные газонаполненные амортизаторы.

Примечание У любого амортизатора есть две важнейшие характеристики: сила сопротивления на отбой и на сжатие.

Интересно Сила сопротивления амортизатора на сжатие меньше, чем сила сопротивления на отбой. Сделано это для того, чтобы при наезде на препятствие колесо как можно легче и быстрее переместилось вверх, а при проезде выбоины оно как можно медленнее опускалось в нее. Таким образом достигаются наилучшие показатели по комфорту езды.

 Двухтрубные гидравлические амортизаторы

Название амортизатора данного типа говорит само за себя. Простейший вид амортизатора — это две трубы, внешняя и внутренняя (представлен на рисунке 6.9). Внешняя труба еще выполняет роль корпуса всего амортизатора и резервуара для рабочей жидкости. Внутренняя труба амортизатора называется цилиндром. Внутри цилиндра установлен поршень, выполненный как одно целое со штоком. В поршне есть отверстия, в которые установлены односторонние клапаны, часть клапанов направлена в одну сторону, остальные – в обратную. Одни клапаны называются компенсационными, другие – клапанами отбоя.

Рисунок 6.9 Двухтрубный телескопический амортизатор.

Примечание Односторонний клапан — это клапан, открывающийся только в одном направлении. Применительно к амортизатору клапаны называются клапанами отбоя и сжатия.

Отбой и сжатие — это растягивание и сжатие амортизатора соответственно.

Полость между цилиндром и корпусом называется компенсационной. Эта полость, а также цилиндр амортизатора заполнены рабочей жидкостью. Цилиндр с одной стороны имеет отверстие для штока поршня, а с другой стороны заглушен пластиной с отверстиями и односторонними клапанами в них — компенсационными и клапанами сжатия.

При перемещении поршня в цилиндре масло перетекает из полости под поршнем в полость над поршнем, при этом часть масла выдавливается через клапан, находящийся снизу цилиндра. Часть жидкости через клапаны сжатия перетекает во внешний компенсационный резервуар, где сжимает воздух, прежде находившийся под атмосферным давлением в верхней части корпуса амортизатора. Поскольку эта жидкость имеет определенную вязкость и текучесть, то быстрее, чем предопределено, процесс перетекания проходить не будет. То же самое, только в обратном направлении, происходит на ходе отбоя, когда поршень перемещается вверх. При этом задействуются компенсационные клапаны пластины цилиндра и клапаны отбоя в поршне.

Однако данная конструкция имеет один, но существенный недостаток: при длительной работе амортизатора рабочая жидкость нагревается, начинает смешиваться с воздухом в компенсационном резервуаре и вспенивается, в результате происходит потеря эффективности работы и выход из строя.

 Двухтрубные газо-гидравлические амортизаторы

Чтобы решить проблему вспенивания рабочей жидкости в амортизаторе, решили в компенсационный резервуар вместо воздуха закачать инертный газ (обычно используют азот). Давление может колебаться от 4 до 20 атмосфер.

Принцип работы ничем не отличается от двухтрубного гидравлического амортизатора, с той лишь разницей, что рабочая жидкость не вспенивается так интенсивно.

 Однотрубные газонаполненные амортизаторы

Отличительной особенностью данных амортизаторов от вышеупомянутых конструкций является то, что у них есть только одна труба — она выполняет роль и корпуса, и цилиндра. Устройство такого амортизатора отличается только тем, что в нем нет компенсационных клапанов (рисунок 6.10). В поршне есть клапаны отбоя и сжатия. Однако особенностью данной конструкции является плавающий поршень, отделяющий резервуар с рабочей жидкостью от камеры с газом, который закачан под очень высоким давлением (20–30 атмосфер).

Однако не стоит думать, что, если корпус не двойной, значит цена ниже. Так как всю работу выполняет только поршень, то львиную долю цены амортизатора составляет стоимость расчета и подбора поршня. Правда, результатом столь трудоемких работ является повышенная эффективность всех характеристик амортизатора.

Одно из преимуществ данной схемы состоит в том, что рабочая жидкость в амортизаторе значительно лучше охлаждается ввиду того, что в корпусе всего одна стенка. Следующими преимуществами можно назвать уменьшение массы и габаритов и возможность установки «вверх тормашками» — таким образом можно снизить величину неподрессоренных масс *.

Примечание * Неподрессоренной массой является все, что находится между поверхностью дороги и элементами подвески. Углубляться в теорию подвески и колебаний не будем, скажем лишь, что, чем меньше неподрессоренная масса, тем меньше ее инерционность и тем быстрее колесо вернется в исходное положение после наезда на какое-либо препятствие.

Однако существуют и значительные недостатки газонаполненных амортизаторов, такие как:

  • уязвимость для внешних повреждений: любая вмятина обернется заменой амортизатора;
  • чувствительность к температуре: чем она выше, тем выше давление газового подпора и жестче работает амортизатор.

Рисунок 6.10 Однотрубный газонаполненныйамортизатор.

Рисунок 6.11 Однотрубный газонаполненный амортизатор,установленный штоком вниз.

 Упругие элементы

 Пружины

Самым простым и часто используемым упругим элементом, применяемым в конструкции подвески, является пружина. В наиболее простом варианте используется цилиндрическая витая пружина, но, вследствие гонки за оптимизацией и улучшением эффективности работы подвески, пружины могут принимать самые разнообразные формы. Так, пружины могут быть бочкообразными, вогнутыми, конусообразными и с переменным диаметром сечения витка. Сделано это для того, чтобы характеристика жесткости пружины стала прогрессивной, то есть при увеличении степени сжатия упругого элемента должно увеличиваться и его сопротивление этому сжатию, причем функция зависимости должна быть нелинейной и непрерывно возрастающей. Пример графика зависимости возникающей жесткости от величины сжатия приведен на рисунке 6.12.

Бочкообразные пружины иногда называют «миниблоком» (пример таких пружин приведен на рисунке 6.13). Такие пружины при тех же характеристиках жесткости, что и у обычной цилиндрической пружины, имеют меньшие габаритные размеры. Также исключается контакт витков при полном сжатии пружины.

Рисунок 6.12 График зависимости жесткости пружины от степени сжатия.

Рисунок 6.13 Бочкообразные пружины.

Рисунок 6.14 Конусные пружины.

В обычных цилиндрических витых пружинах эта зависимость линейная. Чтобы как-то решить эту проблему, стали изменять сечение и шаг витка.

Изменяя форму пружины (рисунок 6.14), стараются приблизить жесткость к идеальной, ориентируясь по графику (рисунок 6.12).

 Рессоры

Рессора — самый простой и древний вариант упругого элемента в подвесках автомобилей. Чего проще: взять несколько стальных листов, соединить их вместе и подвесить на них элементы подвески. К тому же, рессора обладает свойством гашения колебаний за счет трения между листами. Рессорная подвеска хороша для тяжелых внедорожников и пикапов, в отношении которых нет особых требований к комфорту передвижения, но есть высокие требования к грузоподъемности.

Также рессора до недавнего времени применялась и в таком автомобиле, как Chevrolet Corvett, правда, там она располагалась поперечно и была выполнена из композитного материала.

Рисунок 6.15 Chevrolet Corvett с поперечной углепластиковой рессорой.

 Торсион

Торсион — тип упругого элемента, который часто применяется для экономии места. Он представляет собой стержень, один конец которого подсоединен к рычагу подвески, а второй зажат с помощью кронштейна на кузове автомобиля. Когда рычаг подвески перемещается, этот стержень скручивается, выступая в роли упругого элемента. Основное преимущество заключается в простоте конструкции. К недостаткам можно отнести то, что торсион для нормальной работы должен быть достаточно длинным, но из-за этого возникают проблемы с его размещением. Если торсион расположен продольно, то он «съедает» место под кузовом или внутри него, если он поперечный — уменьшает параметры геометрической проходимости автомобиля.

Рисунок 6.16 Пример подвески с продольно расположенным торсионом (длинным стержнем, закрепленным спереди на рычаге, сзади – на поперечине кузова).

 Пневматический элемент

По мере загрузки автомобиля ручной поклажей и пассажирами, задняя подвеска проседает, уменьшается дорожный просвет, возрастает вероятность пробоя подвески (о том, что это такое, мы говорили выше). Чтобы этого избежать, сначала решили заменить пружины задней подвески пневматическими элементами (пример такого элемента представлен на рисунке 6.17). Данные элементы представляют собой резиновые подушки, в которые закачан воздух. Если задняя подвеска нагружена, в пневматических элементах поднимается давление воздуха, положение кузова относительно поверхности и ход подвески остаются неизменными, вероятность замыкания элементов ходовой части сводится к минимуму.

Рисунок 6.17 Пневматическая подушка.

Рисунок 6.18 Передняя подвеска с подрамником.

Для расширения возможностей пневмоэлементов установили мощные компрессоры, электронный блок управления и предусмотрели возможность автоматического и ручного управления подвеской. Так получилась полуактивная подвеска, которая, в зависимости от режима движения и дорожной обстановки, автоматически изменяет величину дорожного просвета. После введения в конструкцию амортизаторов с изменяемой жесткостью на выходе получили активную подвеску.

 Подрамник

Чтобы обеспечить шумо- и виброизоляцию детали подвески часто крепятся не к самому кузову, а к промежуточной поперечине или подрамнику (пример которого приведен на рисунке 6.18), образующему вместе с элементами подвески единую сборочную единицу. Такая конструкция упрощает сборку на конвейере (а значит, снижает себестоимость автомобиля), регулировочные работы и последующий ремонт.

Рисунок 6.19 Пример установки стабилизатора поперечной устойчивости.

 Стабилизатор поперечной устойчивости

При прохождении поворотов автомобиль наклоняется в сторону, противоположную повороту, — на него действуют центробежные силы. Есть два пути минимизации данного эффекта: сделать очень жесткую подвеску или установить стержень, связывающий колеса одной оси, особым образом. Первый вариант интересен, но чтобы бороться с кренами автомобиля в поворотах, пришлось бы сделать очень жесткую подвеску, что свело бы на нет показатели комфорта автомобиля. Еще один вариант — установка активной подвески со сложным электронным управлением, которая в поворотах делала бы подвеску внешних колес более жесткой. Но этот вариант очень дорогостоящий. Потому пошли по простейшему пути – установили стержень, которым связали через стойки или напрямую рычаги подвесок колес с обеих сторон автомобиля (смотрите рисунок 6.19. Таким образом, при прохождении поворота, когда колеса, находящиеся с внешней стороны относительно центра поворота, поднимаются вверх (относительно кузова), стержень скручивается и как бы подтягивает к кузову внутреннее колесо, тем самым стабилизируя положение автомобиля. От этого и название — «стабилизатор поперечной устойчивости».

Основными недостатками обычного стабилизатора поперечной устойчивости являются ухудшение плавности хода и снижение общего хода подвески из-за небольшой, но все таки связи между колесами одной оси. Первый недостаток бьет по автомобилям класса люкс, второй – по внедорожникам. В эпоху электроники и технологических прорывов конструкторы не могли не воспользоваться всеми возможностями инженерии, потому придумали и внедрили активный стабилизатор поперечной устойчивости, который состоит из двух частей – одна часть подсоединена к подвеске правого колеса, вторая — к подвеске левого колеса, а посредине два конца стержня стабилизатора зажимаются в гидравлическом или электромеханическом модуле, который имеет возможность скручивать ту или иную часть, повышая тем самым стабильность автомобиля, а когда автомобиль движется прямо, «распускает» эти два конца стержня, давая тем самым возможность каждому из колес вырабатывать отведенный им ход подвески.

Геометрическая проходимость автомобиля

Под геометрической проходимостью автомобиля понимают совокупность его параметров, влияющих на способность беспрепятственно передвигаться в тех или иных условиях. К таким параметрам относят высоту дорожного просвета автомобиля, углы съезда и въезда, угол рампы, величину свесов. Дорожный просвет или клиренс автомобиля — это высота от самой низкой точки кузова, узла (например, деталей подвески) или агрегата (к примеру, картера двигателя) машины до поверхности земли. Угол съезда и въезда — это параметры, определяющие возможность автомобиля взбираться на горку под определенным углом или съезжать с нее. Величина этих углов напрямую связана с другим параметром, входящим в понятие геометрической проходимости — длины переднего и заднего свесов. Как правило, если свесы короткие, то машина может иметь большие углы въезда и съезда, что помогает ей без труда взбираться на крутые горки и съезжать с них. В свою очередь, знать длину свесов важно, чтобы понимать, можно ли припарковать свое авто к тому или иному бордюру. Наконец, еще один параметр — угол рампы, зависящий от длины колесной базы и высоты кузова автомобиля над поверхностью. Если база длинна, а высота мала, то автомобиль не сможет преодолеть точку перехода из вертикальной плоскости в горизонтальную — проще говоря, машина, поднявшись на гору, не сможет перевалить через ее пик, и «сядет» на днище.

Cтроение подвески автомобиля

Многие посетители нашего сайта, наверное, были в деревне, видели конную упряжку, телегу, нелегкий труд крестьянина и тому подобное! Может многим удалось прокатиться в телеге, испытать эти чувства «лягушонка в коробчонке».

Так вот, – телега является ярким примером отсутствия какого – либо сглаживающего устройства от неровностей дороги, а именно подвески. А теперь представьте автомобиль, у которого есть только оси, к ним присоединены колеса и скорость авто примерно 90 км\ч… Что будет с пассажирами автомобиля? Жуть!

Для исключения этих неприятных вещей и была разработана подвеска автомобиля, которая устанавливается на задние и передние колеса. Главное предназначение подвесок (передней и задней) заключается в связи колес с кузовом автомобиля, а так же в гашении вибраций от неровностей дороги.

В общих чертах все подвески похожи по своему составу, но разные по способу реализации своих свойств.

Общие элементы для всех типов подвесок:

  • элементы обеспечения упругости
  • элементы распределения направления силы
  • гасящий элемент
  • элементы стабилизации поперечной устойчивости
  • крепеж

Элементы обеспечения упругости служат своеобразным буфером между неровностями дороги и кузовом авто. Они первыми воспринимают неровности и передают их на кузов автомобиля. К ним относятся витые пружины, рессоры и торсионы.

  • Пружины бывают с постоянной жесткостью, у которых диаметр пружины одинаковый по концам и диаметр прутка, из которого они изготовлены, так же одинаков по всей пружине. Пружины с разным диаметром прутка и диаметром пружины называются пружинами с переменной жесткостью. В центре пружины устанавливается резиновый отбойник, который предназначен для сглаживания колебаний, если пружина под нагрузкой сжата практически до конца.
  • Рессоры представляют собой набор металлических упругих полос, стянутых своеобразной «стремянкой» и имеющие разную длину.
  • Торсионы представляют собой металлическую трубу, внутри которой расположены стержни, работающие по принципу скручивания. То есть, перед установкой торсионы «накручиваются» вдоль своей оси и после установки на авто создают усилие на раскручивание, но поскольку раскручивание ограничено рычагами, амортизаторами, то эту силу используют в качестве элемента упругости.
  • Есть еще один вид элементов упругости – пневматический и гидропневматический. Действие первого основано на свойствах сжатого воздуха, второй представляет симбиоз рабочей жидкости и сжатого воздуха в одной камере, разделенной перегородкой. Изготовлен элемент в виде герметичного баллона, который накачивается насосом от ДВС и меняет в зависимости от условий вождения жесткость элемента упругости и дорожный просвет. Попросту — «поднимает» кузов или «опускает» относительно дороги. Широко используется на автомобилях Citroen.

Элементы распределения направления силы служат одновременно для крепления подвески к кузову авто, передачи силы на кузов и правильного расположения колес относительно кузова по вертикали и горизонтали. К этим элементам относятся рычаги сдвоенные, рычаги поперечной и продольной установки.

Гасящий элемент (амортизатор) предназначен для противодействия элементам упругости, а именно сглаживания колебаний. Конструктивно амортизатор выполнен в виде металлической трубы с элементами крепления и использует принцип гидравлического сопротивления, если жидкость перетекает из одной полости в другую, через клапан.

Различают два вида амортизаторов – однотрубный и двухтрубный. По способу действия – на масляный, газомасляный и пневматический. Некоторые современные амортизаторы имеют дополнительные гаджеты – изменение калибровочного отверстия клапана, что влияет на свойства амортизации и переменную вязкость рабочей жидкости, при воздействии электромагнитного поля.

Элементы стабилизации поперечной устойчивости – это штанга, вкупе с опорами крепления к кузову, соединяющая рычаги противоположных колес. Предназначены элементы для распределения боковой нагрузки авто на поворотах и уменьшения крена.

Крепление элементов подвески автомобиля к кузову и к опорам колеса осуществляется при помощи болтовых соединений, резинометаллических втулок (сайлент-блоков) и шаровых опор.

  • Сайлент-блоки впрессовываются в рычаги и соединяются с кузовом или подрамником болтовым соединением.
  • Шаровая опора представляет собой шарнирный механизм, который крепится к рычагам, а своим «пальцем» к опоре колеса. Устанавливается как на передней подвеске, так и на задней у некоторых авто, например, у «Хонды»

Типы подвесок автомобиля

Из-за особенности в конструкции подвесок различают два основных вида – это зависимая подвеска и независимая.

Зависимая подвеска подразумевает жесткое соединение противоположных колес, перемещение одного в поперечной плоскости вызывает перемещение и второго колеса. Независимая подвеска является более сложной конструкции, у которой перемещение колес не зависит друг от друга. Вследствие чего повышается плавность хода.

В свою очередь независимые подвески авто подразделяются на:

Секреты подвески автомобиля

Одним из основных элементов автомобиля является его подвеска. Она является связующим звеном между кузовом или рамой автомобиля и дорогой. За время развития автомобильной промышленности подвеска претерпела множество конструктивных изменений, направленных на улучшение управляемости машиной и комфорта для пассажиров. Сегодня мы расскажем о существующих видах подвесок, и о том, какие функции они выполняют.

История изобретения подвески

Первым автомобилям «повезло», что у них были предшественники в виде карет. Именно на этих повозках, движущей силой которых были лошади, а затем – паровые двигатели, инженеры совершенствовали конструкции, которые через много лет «перекочевали» на машины. Уже на первых автомобилях появилась рессорная подвеска, которая выполняла несколько довольно важных функций. Во-первых, она связывала кузов машины с дорогой. Во-вторых, подвеска обеспечивала передачу через колеса сил от дороги на несущую систему. И, наконец, в-третьих, она отвечает за плавность движения автомобиля, а также регулирует необходимое перемещение колес относительно кузова машины.

Ford Model T Landaulet ’1909. Каретообразный автомобиль

Подвески, которые были «унаследованы» от карет, имели рессорное строение и относились к классу зависимых – то есть, оба колеса на одной оси имели жесткую связку между собой, что отражалось на плавности движения не самым лучшим образом. Затем из конструкции подвесок инженеры начали изымать рессоры, и добавлять рычаги. Но сама конструкция при этом оставалась зависимой. Впрочем, рычажная подвеска уже отличалась более прогрессивными характеристиками, что не преминуло сказаться на плавности хода автомобилей. Настоящий комфорт водители почувствовали, когда автомобильные конструкторы изобрели независимую подвеску, в которой оба колеса одной оси не были жестко связаны между собой. Вершиной эволюции подвесок стала так называемая активная конструкция, при которой водитель или бортовой компьютер автомобиля может изменять параметры подвески в зависимости от скорости движения автомобиля и качества дорожного покрытия.

Устройство и основные параметры подвесок

Подвеска представляет собой сложную конструкцию, в которой выделяют три группы деталей. Первая группа – упругие элементы, воспринимающие и передающие адекватные силы реакции дорожного покрытия, которые возникают, когда колеса машины наезжают на разного рода препятствия. Вторая группа – направляюще элементы, передающие боковые и продольные силы и их моменты, а также определяют характер перемещения колес и их связи друг с другом и с рамой или кузовом. Третья группа – амортизаторы, детали подвески, отвечающие за поглощение колебаний, которые через колеса передаются от неровностей дорожного полотна на элементы подвески. Нередко в различных типах подвески (например, рессорной), один элемент может выполнять функции как первой, так и второй группы, а иногда даже всех трех групп сразу.

Схема подвески автомобиля

Чтобы оптимально настроить подвеску для определенного типа дорожного покрытия (например, для российских дорог), инженеры используют несколько параметров.

Чтобы правильно выставить переднюю и заднюю подвески автомобиля необходимо знать параметры его колеи (поперечное расстояние между колесами одной оси) и колесной базы (продольное расстояние между передней и задней осей). Также важны знания центров поперечного (воображаемая точка, проходящая через центры колес в вертикальной плоскости, которая остается неподвижной при любом крене авто) и продольного (воображаемая точка, проходящая через центры колес, которая остается неподвижно при разгоне и торможении авто) кренов, оси кренов и их расположения по отношению к центру тяжести автомобиля. В случае с поперечным центром крена, чем ближе он к центру тяжести, тем меньше машина кренится в поворотах на скорости. В случае же с продольным центром крена, то чем ближе он к центру тяжести, тем меньше кузов машины наклоняется вперед или назад при торможении и разгоне соответственно. Помимо этих характеристик, на правильность настройки подвески влияют углы установки колес, а также значение подрессоренных и не подрессоренных масс.

Типы и виды подвесок

Все подвески по характеру работы их конструктивных элементов делятся на два типа – зависимые и независимые. О том, что они собой представляют, мы указывали выше.

Зависимые подвески, в свою очередь, делятся на четыре вида. Остановимся на каждом из них подробнее.

Первым видом зависимой автомобильной подвески стала подвеска на поперечных рессорах. Именно она была заимствована у карет. Конструкция этой подвески проста: неразрезная балка моста, над которой крепится полуэллиптической формы поперечная рессора. Когда в конструкцию подвески добавили редуктор, она приобрела форму буквы Л. Чтобы сделать рессоры менее податливыми, инженера внесли в конструкцию подвески такие элементы как продольные реактивные тяги.

Ford Model T Runabout ’1912

Такую подвеску имели самые первые автомобили, например Ford T. К достоинствам подвески на поперечных рессорах можно отнести дешевизну производства (и, как следствие, ремонта и обслуживания) и простоту устройства. К недостаткам – особенности конструкции (увеличенная податливость при кренах в продольном направлении, при которых угол поворота моста мог резко измениться при наезде на препятствие), что сказывалось на управляемости автомобилем. Еще одним минусом такой подвески была ее недолговечность, особенно при использовании автомобиля на дорогах с плохим покрытием.

Вторым видом зависимой подвески стала конструкция на продольных рессорах. Устройство ее тоже не отличалось сложностью: пара продольных рессор, и на них подвешена балка моста. Причем, в зависимости от конструкции, балка моста могла находиться как над рессорами (характерно для легковых автомобилей), так и под ними (характерно для грузовых автомобилей).

Схема зависимой подвески на продольных рессорах

В силу своего устройства рессора на свою переднюю часть принимает боковые и продольные силы реакции от дорожного полотна, выступая, тем самым, своеобразным рычагом подвески. Рессора в этом виде подвески многолистовая, в ней различают коренные, подкоренные, внутренние листы. Коренный лист крепится своими концами к другим частям подвески. Сами рессоры, к слову, бывают разного строения: эллиптические, полуэллиптические, 3/4 –эллиптические, 1/4 –эллиптические, кантилеверные и балансирные. Подвеска с продольными рессорами ставилась и ставится на многие автомобили – Chevrolet, Chrysler, Volvo, Dodge и так далее. К достоинствам такой подвески относится ее простота (ее характеристики, в частности, способность принимать различные типы усилий, позволяют обойтись без многих деталей – реактивные тяги, рычаги и так далее), относительная дешевизна, возможность варьирования жесткости (путем подбора листов рессор различной длины и толщины). Кроме того, опять же из-за особенностей конструкции, такая подвеска отличается долговечностью, высокой грузоподъемностью и плавностью хода. К недостаткам подвески на продольных рессорах можно отнести слабое противодействие продольным и боковым силам при движении на высокой скорости, что приводит к ухудшению управляемости автомобилем.

Третий вид зависимой подвески – подвеска с направляемыми рычагами. В зависимости от количества рычагов, такие подвески бывают двух, трех, четырех и пятирычажные. Самая распространенная в настоящее время – пятирычажная зависимая подвеска с тягой Панара (поперечный рычаг). Устанавливается эта подвеска на множество современных легковых автомобилей, в числе которых – Fiat, Volvo, Kia, Hyundai. Рычаги такого вида подвески с одной стороны крепятся к раме или кузову автомобиля, а со второй – к балке моста. В конструкции таких подвесок присутствуют амортизаторы, которые гасят неровности дорожного покрытия.

Зависимая подвеска с направляющими рычагами.

Различают подвески с тягой Панара (бывают разрезными и сплошными), с механизмом Ватта (есть вертикальный рычаг, который компенсирует колебания от воздействия боковых и вертикальных сил) и механизмом Скотта-Рассела (есть длинный и короткий рычаги, которые соединены таким образом, что позволяют улучшить курсовую устойчивость машины). К плюсам такой подвески можно отнести надежность конструкции, плавность хода. К минусам – сложность конструкции, дороговизну обслуживания и ремонта.

Четвертый вид – подвеска «Де-Дион», являющаяся промежуточной между зависимыми и независимыми подвесками. Особенность конструкции этой подвески (наличие подпружиненной неразрезной балки, отсутствие, за исключением ступиц колес и самих колес, неподрессоренных масс) позволяет применять ее только на задних ведущих мостах автомобиля.

Схема подвески Де-дион

Устанавливалась такая подвеска на модели Alfa Romeo, Fiat, Mercedes-Benzб Smart. Плюс такой подвески – самая лучшая среди перечисленных выше плавность хода. Минус – дисбаланс при разгоне и торможении, высокая стоимость производства, ремонта и обслуживания.

(о независимых подвесках читайте во второй части материала)

Подвеска автомобиля: строение, элементы, назначение

Ходовая часть транспортного средства – важнейшая высокотехнологичная группа, от работы которой зависят многие характеристики транспортного средства. Исправность всех ее узлов и агрегатов – залог безопасности на дороге. В свою очередь, ядром ходовой является подвеска автомобиля. Система амортизации служит для связи колес с кузовом машины, и главная ее цель – максимально сгладить все колебания, причиной которых являются дефекты дорожного полотна, и при этом эффективно реализовать энергию движения транспортного средства.

Строение

К современным машинам предъявляется множество требований. Они должны быть хорошо управляемыми и при этом устойчивыми, бесшумными, комфортными и безопасными. Чтобы претворить в жизнь все эти пожелания, инженерам требуется тщательно продумать устройство подвески.

На сегодняшний день не существует какого-либо универсального эталона. В арсенале каждого автопроизводителя свои хитрости и современные разработки. Однако, для всех типов подвесок характерно наличие таких объектов:

  • Упругий элемент.
  • Направляющая часть.
  • Стабилизатор устойчивости.
  • Амортизирующие устройства.
  • Колесная опора.
  • Крепежи.

Упругий элемент

Автомобильная подвеска содержит упругие элементы, изготовленные из металла и неметаллические части. Они необходимы для перераспределения ударной нагрузки, получаемой колесами при встрече с неровностями дороги. К металлическим упругим деталям относятся рессоры, торсионы и пружины. Неметаллические элементы — это резиновые отбойники и буферы, пневматические и гидропневматические камеры.

Металлические объекты

Исторически самыми первыми появились рессоры. С точки зрения конструкции — это металлические полосы разной длины, соединенные между собой. Помимо эффективного перераспределения нагрузки, рессоры хорошо амортизируют. Чаще всего они используются в ходовой части грузовиков.

Торсионы представляют собой наборы пластин или стержней, работающих на скручивание. Обычно торсионной бывает задняя подвеска автомобиля. Устройства этого типа используют, кроме того, японские и американские производители машин увеличенной проходимости.

Металлические пружины входят в состав ходовой части любого современного авто. Эти элементы могут иметь постоянную или переменную жесткость. Их упругость зависит от геометрии прутка, из которого они изготовлены. Если диаметр прутка меняется на всем протяжении, то пружина имеет переменную жесткость. В противном случае упругость является постоянной.

Неметаллические объекты

Упругие неметаллические детали используются совместно с металлическими. Резиновые элементы – отбойники и буферы – не только участвуют в перераспределении динамических нагрузок, но и амортизируют.

Пневматические и гидропневматические камеры используются в конструкциях активных подвесок. Их действие определяется свойствами только сжатого воздуха (пневмокамеры) или газа и жидкости (гидропневматические камеры). Эти упругие элементы дают возможность менять клиренс транспортного средства и жесткость системы амортизации автоматически. Кроме того, они обеспечивают высокую плавность хода. Первыми были разработаны гидропневматические камеры. Они появились на машинах марки Citroen в 1950-х годах. Сегодня пневматическими и гидропневматическими подвесками опционно оснащают авто бизнес-класса: Mercedes-Benz, Audi, BMW, Volkswagen, Bentley, Lexus, Subaru и др.

Направляющая часть

Направляющие элементы подвески – это стойки, рычаги и шарнирные соединения. Их основные функции:

  • Удерживать колеса в правильном положении.
  • Поддерживать траекторию движения колес.
  • Обеспечивать соединение системы амортизации и кузова.
  • Передавать энергию движения от колес на кузов.

Стабилизатор поперечной устойчивости

Подвеска автомобиля не обеспечивала бы транспортному средству необходимой устойчивости без стабилизирующего устройства. Оно борется с центробежной силой, стремящейся опрокинуть машину при повороте, и уменьшает крены кузова.

В техническом отношении стабилизатор поперечной устойчивости – это торсион, связывающий систему амортизации и кузов. Чем выше его жесткость, тем лучше авто держит дорогу. С другой стороны, излишняя упругость стабилизатора уменьшает ход подвески и снижает плавность движения транспортного средства.

Стабилизаторами поперечной устойчивости оснащают, как правило, обе оси машины. Но если задняя подвеска автомобиля торсионная, устройство устанавливают только спереди. Полностью отказаться от него смогли инженеры Mercedes-Benz. Они разработали особый тип адаптивной подвески с электронным контролем положения кузова.

Амортизирующие устройства

Для того чтобы смягчить сильные колебания, подвеску снабжают амортизаторами. Эти объекты представляют собой пневматические цилиндры или цилиндры с рабочей жидкостью. Выделяют два основных типа амортизаторов:

  • Односторонние.
  • Двусторонние.

Односторонние амортизаторы длиннее двусторонних. Они обеспечивают большую плавность хода. Однако при езде по дорогам с плохим покрытием, односторонние амортизаторы не успевают перед следующей неровностью своевременно вернуть подвеску в исходное состояние, и ее «пробивает». По этой причине большее распространение получили двусторонние «гасители колебаний».

Колесная опора

Опоры колес необходимы для принятия и перераспределения нагрузок, приходящихся на колеса.

Крепежи

Шаровая опора

Крепежи нужны для того, чтобы подвеска автомобиля была единым целым. Для связи узлов и агрегатов используют три типа соединений:

  • Болтовые.
  • Шарнирные.
  • Эластичные.

Крепежи, осуществляемые при помощи болтов, являются жесткими. Они необходимы для неподвижного сочленения объектов. К шарнирным соединениям относится шаровая опора. Она является важной частью передней подвески и обеспечивает ведущим колесам возможность правильного поворота. Эластичные крепежи – это сайлент-блоки и резино-металлические втулки. Помимо функции соединения частей и крепления их к кузову, эти объекты препятствуют распространению вибраций и снижают шумность.

Все элементы ходовой части взаимосвязаны и чаще всего выполняют несколько функций одновременно, поэтому определение принадлежности запчасти к той или иной группе является условным.


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости