На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.
СправочникОсновные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!
Заказать решениеНе можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!
При сведении заданного интеграла к табличному часто используются следующие преобразования дифференциала как операция «подведения под знак дифференциала». При этом используется формула:
Вообще говоря, внесение (подведение) под знак дифференциала и замена переменной (метод подстановки) – это один и тот же метод нахождения неопределенного интеграла; отличие состоит только в оформлении.
Итак, внесение под знак интеграла опирается на следующее правило интегрирования. Если в произведении функции, стоящей под знаком интеграла, и дифференциала можно увидеть произведение другой функции и дифференциала от нее, то применяем подведение под знак дифференциала, то есть если
При внесении под знак дифференциала необходимо иметь в виду простейшие преобразования дифференциала:
Очень часто метод внесения под знак дифференциала используют для нахождения интегралов вида
Поэтому имеют место следующие формулы для неопределенных интегралов:
Понравился сайт? Расскажи друзьям! | |
Метод подведения под знак дифференциала редко приводится в литературе, поэтому вначале покажем, почему он выгоден.
Нередко в подынтегральной функции можно увидеть 2 фрагмента, один из которых похож на производную другого. Например,
а) в интеграле числительx похож на производную от :;
б) интеграл можно представить как, где;
в) функция в интеграле– это .
Подобные интегралы часто предлагают находить, заменив новой переменной функцию, производная которой обнаружена. Так, для указанных интегралов
а) если , то, тогдаи, откуда
;
б) поскольку , то, тогдаи, поэтому
.
Более подробно метод замены изложен в § 4.
Однако вычисление 3-го интеграла при помощи замены уже связано с трудностями. Пусть, заметив, что , мы заменили.
Тогда и. Выразитьчерезt можно так:
(, поэтому). Подставим:
.
В результате громоздких действий практически всё сократилось и получился простой табличный интеграл. Возникает вопрос, нельзя ли было прийти к нему быстрее, если почти ни одно выражение не понадобилось.
Действительно, есть более короткое решение:
,
тогда, заменив , сразу получаем интеграл
.
Таким же образом можно было найти интегралы
а)
;
б) .
Здесь действия показаны очень подробно, и половину из них можно пропустить. Особенно коротким сделает решение следующая
Таблица основных дифференциалов
; | ; | ; | ; |
; | ; | ; | |
; | ; | ; | . |
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) ;
9) ;
10) .
ПД1. Найдите интегралы
1) а) ; б); в); г); д);
е) ; ж); з); и); к);
2) а) ; б); в); г); д);
е) ; ж); з); и); к);
3) а) ; б); в); г); д)
е) ; ж); з); и); к);
4) а) ; б); в); г); д);
е) ; ж); з); и); к);
5) а) ; б); в); г); д);
е) ; ж); з); и); к).
При интегрировании функций, содержащих выражение , поможет формула . Например,
а) ;
б) ;
в) .
Полученную скобку удобно обозначить новой буквой и перейти к интегралу по этой переменной (дифференциалы новой и старой переменных совпадут).
Коэффициент перед квадратом лучше выносить за скобку:
,
а затем, если возможно, и за знак интеграла. Так,
; .
Цель замены – перейти к интегралу без линейного слагаемого , поскольку интегралы, содержащие только, находятся проще, и часто – по таблице. При этом важно помнить, что,, и т.п.
А именно (см. § 2),
;
;
,
где a – любое число, и число . Кроме того, при
;
,
где .
Замечание 1. После замены часто появляются интегралы ,или. Их можно найти так:
,
аналогично во 2-м и в 3-м случае.
Однако интегралы вида достаточно сложны. Воспользуйтесь готовыми формулами
;
(проверьте дифференцированием, что это действительно так).
КИ1. Найдите при помощи равенства и замены:
1) ;
2) ;
3) ;
4) .
Пример 1 (для краткости обозначено как.
а) ;
б) .
При поиске иучли, чтоисоответственно, и применили основное правило табличного интегрирования.
КИ2. Найдите интегралы, разложив каждый на сумму интегралов, один из которых – табличный, а другой аналогичен найденным в задании КИ1:
1) ;
2) ;
3) ;
4) .
Пример 2. Найдём интеграл , разложив на сумму двух:
.
Ответ: (модуль не нужен, поскольку всегда).
Пример 3. Возьмём таким же образом интеграл :
.
Рациональнее всего найти интегралы так:
а) ,
где учли, что ;
б) .
Тогда , где.
Ответ: .
Замечание 2. В дальнейшем часто придётся разбивать интеграл на 2 или 3 интеграла, в каждом из которых появляется константа (, и т.д.). Для краткости будем подразумевать (но не указывать) константы в каждом отдельном вспомогательном интеграле (или указывать, но не сопровождать номером), а записывать будем лишь общую константуC в ответе. При этом всегда C – некая линейная комбинация .
КИ3. Получив в знаменателе полный квадрат и сделав замену, найдите
1) ;
2) ;
3) .
Пример 4. Заметив, что
,
заменяем , тогдаи.
Подставим в интеграл:
.
Пример 5.
Поскольку , можно сделать замену, при которойи. Подставим:
.
Пример 6.
Здесь , заменяем, откудаи. Подставим:
,
где . Разобьём интеграл на два:
.
Так же, как в предыдущих примерах,
,
а 2-й интеграл – табличный: .
Итак, , где. Тем самым
.
Пример 7.
Теперь , замена, поэтомуи.
Переходим к интегралу от новой переменной:
,
где .
Найдём отдельно
а) ;
б) ;
в) (табличный интеграл).
Умножим 2-й результат на 7, 3-й на 10, соберём подобные слагаемые и вернёмся к старой переменной:
.
КИ4. Найдите интегралы от иррациональных функций:
1) ;
2) ;
3) .
Пример 8. Найдём . Похожий интеграл без корня уже найден выше (пример 6), и достаточно на соответствующем шаге добавить корень:
,
где . Разбиваем
и находим
а) ;
б) .
Таким образом, , где.
Ответ: .
Пример 9. Полный квадрат удобно получить так:
,
где . Тогда
.
Заменим . При этоми:
.
Действуем так же, как в примере 8:
а) ;
б) ,
.
Ответ: .
Замечание 3. Нельзя из-под корня выносить знак «–» или любой отрицательный общий множитель: ;, и т.д. В примере 9 показан единственно возможный правильный способ действий.
Пример 10. Посмотрим, что изменится, если в примере 9 поставить квадрат: найдём. Теперь после тех же замен окажется, что
.
Как обычно,
,
и 2-й и 3-й интегралы находятся так же, как в примере 9:
;
.
Согласно указаниям на стр. 19, 1-й интеграл можно преобразовать так:
,
где снова , а
.
Новый интеграл находят или тригонометрической подстановкой , или повторным интегрированием по частям, взяви. Воспользуемся готовой формулой(стр. 19):
.
Умножим все интегралы на соответствующие им коэффициенты и соберём вместе:
,
в ответе приведём подобные слагаемые.
Ответ: .
Высшая математика:
Математика для заочников Математические формулы,таблицы и справочные
материалы
Книги по математике Математические сайты >>> Удобный калькуляторНе нашлось нужной задачи? Сборники готовых решений!
Не получается пример? Задайте вопрос на форуме!>>> mathprofi.com
Учимся решать:
Карта сайта
Отблагодарить автора >>>
Если Вы заметили опечатку, пожалуйста, сообщите мне об этом
Заказать контрольную Часто задаваемые вопросы Гостевая книга
Поставьте нашу кнопку:
На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.
Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:
– Подведение функции под знак дифференциала; – Собственно замена переменной.
По сути дела, это одно и то же, но оформление решения выглядит по-разному.
Начнем с более простого случая.
На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:
То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.
Пример 1
Найти неопределенный интеграл. Выполнить проверку.
Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?
Подводим функцию под знак дифференциала:
Раскрывая дифференциал, легко проверить, что:
Фактически и – это запись одного и того же.
Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?
Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.
Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:
Теперь можно пользоваться табличной формулой :
Готово
Единственное отличие, у нас не буква «икс», а сложное выражение .
Выполним проверку. Открываем таблицу производных и дифференцируем ответ:
Получена исходная подынтегральная функция, значит, интеграл найден правильно.
Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции . По сути дела подведение функции под знак дифференциала и – это два взаимно обратных правила.
Пример 2
Найти неопределенный интеграл. Выполнить проверку.
Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .
Подводим функцию под знак дифференциала:
Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на . Далее используем табличную формулу :
Проверка: Получена исходная подынтегральная функция, значит, интеграл найден правильно.
Пример 3
Найти неопределенный интеграл. Выполнить проверку.
Это пример для самостоятельного решения. Ответ в конце урока.
Пример 4
Найти неопределенный интеграл. Выполнить проверку.
Это пример для самостоятельного решения. Ответ в конце урока.
При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:
И так далее.
В конце данного параграфа хотелось бы еще остановиться на «халявном» случае, когда в линейной функции переменная входит с единичным коэффициентом, например:
Строго говоря, решение должно выглядеть так:
Как видите, подведение функции под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла в таблице вообще-то нет.
Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.
Пример 5
Найти неопределенный интеграл.
В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.
Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой. В данном случае напрашивается: Вторая по популярности буква для замены – это буква . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.
Итак: Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место. Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .
Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.
Так как , то
После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко: Теперь по правилам пропорции выражаем нужный нам :
В итоге: Таким образом:
А это уже самый что ни на есть табличный интеграл (таблица интегралов, естественно, справедлива и для переменной ).
В заключении осталось провести обратную замену. Вспоминаем, что .
Готово.
Чистовое оформление рассмотренного примера должно выглядеть примерно так:
“
Проведем замену:
“
Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.
Также всем рекомендую использовать математический знак вместо фразы «из этого следует это». И коротко, и удобно.
При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.
Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.
А теперь самое время вспомнить первый способ решения:
В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче.
Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.
Пример 6
Найти неопределенный интеграл.
Проведем замену: (другую замену здесь трудно придумать)
Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл.
Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:
Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении.
Пример 7
Найти неопределенный интеграл. Выполнить проверку. Это пример для самостоятельного решения. Ответ в конце урока.
Пример 8
Найти неопределенный интеграл.
Замена: Осталось выяснить, во что превратится Хорошо, мы выразили, но что делать с оставшимся в числителе «иксом»?! Время от времени в ходе решения интегралов встречается следующий трюк: мы выразим из той же замены !
Готово.
Пример 9
Найти неопределенный интеграл. Это пример для самостоятельного решения. Ответ в конце урока.
Пример 10
Найти неопределенный интеграл.
Наверняка некоторые обратили внимание, что в моей справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.
Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция и её производная : (функции , могут быть и не в произведении)
В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.
В рассматриваемом примере замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за знаменатель, то велики шансы, что числитель превратится во что-нибудь хорошее.
Замена:
Кстати, здесь не так сложно подвести функцию под знак дифференциала:
Следует отметить, что для дробей вроде, такой фокус уже не пройдет (точнее говоря, применить нужно будет не только прием замены). Интегрировать некоторые дроби можно научиться на уроке Интегрирование некоторых дробей.
Вот еще пара типовых примеров для самостоятельного решения из той же оперы:
Пример 11
Найти неопределенный интеграл.
Пример 12
Найти неопределенный интеграл.
Решения в конце урока.
Пример 13
Найти неопределенный интеграл.
Смотрим в таблицу производных и находим наш арккосинус: . У нас в подынтегральном выражении находится арккосинус и нечто похожее на его производную.
Общее правило: За обозначаем саму функцию (а не её производную).
В данном случае: . Осталось выяснить, во что превратится оставшаяся часть подынтегрального выражения .
В этом примере нахождение я распишу подробно поскольку – сложная функция.
Или короче: По правилу пропорции выражаем нужный нам остаток:
Таким образом:
Вот здесь подвести функцию под знак дифференциала уже не так-то просто.
Пример 14
Найти неопределенный интеграл.
Пример для самостоятельного решения. Ответ совсем близко.
Внимательные читатели заметили, что я рассмотрел мало примеров с тригонометрическими функциями. И это не случайно, поскольку под интегралы от тригонометрических функций отведён отдельный урок. Более того, на указанном уроке даны некоторые полезные ориентиры для замены переменной, что особенно актуально для чайников, которым не всегда и не сразу понятно, какую именно замену нужно проводить в том или ином интеграле. Также некоторые типы замен можно посмотреть в статье Определенный интеграл. Примеры решений.
Более опытные студенты могут ознакомиться с типовой заменой в интегралах с иррациональными функциями. Замена при интегрировании корней является специфической, и её техника выполнения отличается от той, которую мы рассмотрели на этом уроке.
Желаю успехов!
Решения и ответы:
Пример 3: Решение:
Пример 4: Решение:
Пример 7: Решение:
Пример 9: Решение: Замена:
Пример 11: Решение: Проведем замену:
Пример 12: Решение: Проведем замену:
Пример 14: Решение: Проведем замену:
Я выполнил проверку, а Вы? ;)
Автор: Емелин Александр
Высшая математика для заочников и не только >>>
(Переход на главную страницу)
Как можно отблагодарить автора?
Профессиональная помощь по любому предмету – Zaochnik.com
Подведение под знак дифференциала — метод интегрирования, который используется достаточно часто.
Технически подведение под знак дифференциала и замена переменной — один и тот же метод нахождения неопределенного интеграла. Отличие — в оформлении.
Подведение под знак интеграла опирается на III правило интегрирования. Если в произведении функции, стоящей под знаком интеграла, и дифференциала можно увидеть произведение другой функции и дифференциала от нее, то применяем подведение под знак дифференциала:
Рассмотрим интегрирование подведением под знак дифференциала на примерах.
Под знаком интеграла стоит произведение
Поскольку
Не хватает только минуса. Его получаем, умножив на -1 подынтегральную функцию и одновременно вынося минус за знак интеграла.
Очень часто подведение под знак дифференциала используют для нахождения интегралов вида
Нахождение таких интегралов не вызывает затруднений, и в дальнейшем, когда интегралы такого вида появляются в процессе вычисления более сложных интегралов, можно не расписывать их, а сразу записывать ответ с учетом формул:
Примеры для самопроверки
Найти интеграл подведением под знак дифференциала:
Показать решение
"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453