С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Водородный двигатель для автомобиля


Водородные двигатели на авто

Называть ленивый переход автомобильных двигателей на альтернативные источники энергии, мягко говоря, некорректно. Но тенденция уже намечена. Сначала стандарт Евро1 в 90-х годах прошлого века, потом все плотнее сужающиеся рамки допустимых выбросов в атмосферу. По большому счету, только очень богатые автомобильные производители пока предлагают альтернативу бензину и солярке. А начиналось все совсем не так.

Содержание:

Первый автомобиль с водородным двигателем

Поскольку речь пойдет сегодня о том, как использовать водородные двигатели на авто, о перспективах их появления на конвейерах автозаводов в принципе, то просто нельзя не вспомнить о том, что такой двигатель появился на 75 лет раньше бензинового силового агрегата. Это было 1806 году, а само изобретение приписывают франко-швейцарскому изобретателю де Ривазу. Как известно, бензиновый двигатель был изобретен только к концу 19 века.

Водородный двигатель призван решить не только экономическую проблему постоянного подорожания нефтепродуктов. В конце концов, нефть когда-то закончится и в тот момент будет поздно думать о ее альтернативе. С другой стороны, ученые ищут замену обычному топливу для автомобильных двигателей в буквальном смысле, чтобы спасти цивилизацию. Атмосфера планеты уже перенасыщена оксидами азота, оксидами серы, углекислым газом. А с ростом количества частного автомобильного транспорта даже в развивающихся странах, ситуация с экологическими показателями атмосферы планеты близка к критической.

Что такое водородный двигатель

Сегодня явно очерчено два направления, в которых работают конструкторы водородомобилей.

  1. Проводятся попытки научить работать на водороде обычный двигатель внутреннего сгорания.
  2. Использование топливных элементов на водороде для получения электричества, как источника энергии.

Оба эти направления считаются перспективными и уже можно говорить о более-менее результативных экспериментах в этой области.

К примеру, автомобиль Toyota Mirai работает по принципу гибридного автомобиля. Единственный вид используемой энергии — электричество. Но при этом электродвигатель питается как от никель-металлгидридной батареи, так и от водородного топливного элемента, так называемого электрохимического генератора.

Принцип работы двигателя с водородным генератором

Принцип работы водородомобиля не слишком сложен. Вот схематическое изображение устройства и принципа действия водородного агрегата.

  1.  Встречный воздух подается через решетки в передней панели и в бампере.
  2. Воздух, а точнее, кислород, который находится в воздухе, подается водородный генератор.
  3. Генератор вырабатывает электрическую энергию, которая подается в аккумулятор.
  4.  Также часть энергии идет на работу электродвигателя.
  5.  Электродвигатель через систему привода вращает ведущие колеса.
  6. Вода, которая образована в результате химической реакции, сливается из автомобиля или автоматически, или по команде водителя.

Принцип работы водородного генератора также несложен. Он основан на химической реакции водорода и кислорода, в результате молекулярного взаимодействия которых вырабатывается электрическая энергия. Выше мы разместили наглядную схему, показывающую, как работает водородный топливный элемент.

ДВС на водороде?

Еще одно направление, по которому идут изобретатели и конструкторы — применение ДВС, который смог бы работать на смеси водорода и кислорода. Таких наработок существует больше. К примеру, Мазда, Форд, БМВ и МАН уже несколько лет совершенствуют конструкции водородомобилей. За основу они взяли не обычный поршневой двигатель внутреннего сгорания, а роторный. Это объясняется тем, что выпускной и впускной коллекторы расположены довольно близко друг к другу. Выпускной коллектор может нагреваться до очень высоких температур, поэтому есть большая вероятность возгорания топлива вне камеры сгорания. Роторный двигатель лишен такой особенности, поэтому за основу взят именно он.

Однако и стандартный двигатель с кривошипно-шатунным механизмом также был использован в качестве эксперимента на автомобиле БМВ 7-й серии. Это был двигатель, который работал как на бензине, так и на водороде абсолютно независимо. 12-цилиндровый шестилитровый двигатель показывал мощность 260 сил, независимо от вида топлива. Расход водорода на сотню составлял около 50 литров. Водородный бак обеспечивал пробег в 200 км, после чего можно было переключить двигатель на бензин.

Недостатки водородных моторов

Проект провалился. Дело в том, что даже при минимальных переделках конструкции автомобиля, необходимо было устанавливать водородный бак, который занимал половину багажника. Кроме того, инфраструктура водородных заправок в мире насчитывает единицы точек, где можно заправить авто водородом. Добывать водород своими руками не имеет никакого смысла, масштабы не те, да и заправочное оборудование должно быть идеально герметичным.

Ученые прогнозируют более динамичное развитие инфраструктуры водородных заправок только к 2030 году, не ранее. Получать чистый водород можно только двумя путями — либо методом электролиза, либо выделять его из природного газа, поскольку в природе чистого водорода не существует.

Перспектива получать водород из воды выглядит заманчиво, но инвесторы не стоят в очереди на финансирование постройки оборудования, необходимого для получения летучего газа из обычной воды. Разработки продолжаются, нефть потихоньку заканчивается, поэтому человечеству стоит задуматься об альтернативных видах топлива несколько активнее, пока не поздно. А пока, удачных всем дорог на наших дизельных и бензиновых автомобилях.

Водородный двигатель – будущее наших автомобилей

Проблема топливных ресурсов – одна из актуальнейших на сегодняшний день, а с течением времени она будет только усугубляться. Нефтепродукты, среди которых бензин – один из самых потребляемых, не только дорожают с завидной регулярностью, но и в недалёком будущем обещают стать товаром весьма дефицитным. Потому уже сейчас понятно: будущее – за альтернативными видами топлива. Водородный двигатель – вот то самое ноу-хау, которое обещает решить многие проблемы автомобилистов. И самое приятное то, что сделать подобный агрегат, вырабатывающий энергию для машины из воды, можно самостоятельно, как говорится, собственными силами!

Кстати, двигатель «от воды», как и многие чудеса научно-технического прогресса, пришёл к нам с Запада. «Газ Брауна», а именно так называют автомобильный водород, добывают в процессе электролиза. В Америке уже много лет существуют и продаются довольно элементарные установки, позволяющие водителю сэкономить чуть ли не 50 процентов топлива. А люди, разбирающиеся в технике и не забывшие школьный курс физики и химии, собирают водородный генератор своими руками.

От теории к практике

Пробная водородная установка может выглядеть следующим образом. Под капот автомобиля устанавливается небольшая ёмкость с водой – контейнер или сосуд. Эта ёмкость играет роль водородных топливных ячеек. Вода обычная, из крана. В неё насыпается чайная ложечка катализатора, сода, затем погружаются пластины из нержавейки – 2-3 штуки. Проводами пластины соединены с аккумулятором. Когда включается зажигание, начинается процесс химической реакции, и водородный двигатель вырабатывает соответствующий газ. А шланг с водородом монтируется в воздуховод следом за фильтром.

Как и в любом агрегате, в нашем двигателе важно всё установить правильно и в нужной последовательности. Когда установка завершена, из воды путём электролиза добываются кислород и водород. Происходит реакция расщепления молекул воды на водородные и кислородные атомы. Смесь газов по впускному коллектору втягивается в топливный бак машины, там смешивается с бензином и далее сгорает как обычное топливо.

Какую выгоду приносит водородный двигатель, если бензин всё равно нужен, спросите вы? Большую, даже если пока ваше авто ещё не работает на чистом водороде. Обогащение бензина кислородом и водородом способствует более полной выработке горючего, что в разы повышает производительность работы двигателя. Это значит, что если раньше на 100 км, к примеру, вы расходовали 5 литров бензина, то теперь их хватит на 130-150 километров! Неплохо, да?

И ещё о плюсах

Когда-то люди мечтали делать деньги из воздуха, т.е. из «ничего». Водородный двигатель позволяет из другого «ничего» – из воды – получать топливо. Преимущества водородного топлива таковы:

  • высокая экологичность продукта. Отработанные газы практически безвредны и не представляют угрозы окружающей среде в отличие от выхлопных продуктов горения бензина или соляры;
  • теплота сгорания водорода значительная даже по сравнению с бензином – двадцать восемь тысяч шестьсот двадцать килокалорий на килограмм;
  • смесь водорода и кислорода обладает высокой воспламеняемой способностью при широком температурном режиме. Поэтому, независимо от того, атмосферный воздух горяч или холоден, автомобиль одинаково хорошо движется;
  • работая на водородном топливе, машина практически не детонирует, сохраняя мягкий, плавный ход даже при сжатии в пределах 14,0;
  • водородное топливо хорошо воспламеняется при разных пропорциях смешивания с воздухом. Поэтому можно регулировать качество образующейся в двигателе воздушно-газовой смеси, изменяя количество подаваемых смешанных газов (водород и кислород). Если использовать водород (Н2), можно, по большей части, не дросселировать воздушный поток при впуске, благодаря чему повышается температурный коэффициент полезного действия у двигателя машины в режиме частичной нагрузки.

Дальнейшие задачи и перспективы

На сегодняшний день практически все автомобильные концерны – BMW, Honda, Opel, Ford и другие – заняты разработкой водородных двигателей разной модификации с перспективой внедрения их в серийное производство и постепенный переход от бензиновых на газовые виды топлива. Задачи конструкторно-технического характера следующие:

  • если брать за основу бензиновый двигатель, то в нём необходимо увеличить рабочий объём цилиндров;
  • в двигателе должна обеспечиваться необходимая для водорода степень сжатия;
  • водородовоздушная смесь воспламеняется очень быстро, поэтому необходимо разработать систему предотвращения преждевременности этого процесса, особенно учитывая возможность обратных вспышек или детонации;
  • предотвращение образования окисей азота в отработанных газах, когда атмосферный воздух используется как окислитель.

Эти и другие задачи находятся в стадии интенсивного решения, и в недалёком будущем большинство авто будет бегать на водородных двигателях не только самодельных, но и заводских.

Водородный двигатель для автомобиля: описание, преимущества, принцип работы

Актуальность вопроса о замене нефтепродуктов более рентабельным и чистым экологически вариантом с каждым днём только прогрессирует. Сегодня лучшие умы планеты стараются его решить. И многое уже сделано. Лидирующей альтернативой потребителям нефти является водородный двигатель.

Технологии не стоят на месте и водородный двигатель вполне может заменить современные бензиновые агрегаты

При всестороннем рассмотрении водород наиболее соответствует сегодняшним пожеланиям к дающим энергию источникам. Не загрязняет окружающую среду и практически бесконечен, если получать его из обычной воды.

Есть уже и автомобили, работающие на таком летучем веществе, как водород. Понятно, что до массового перехода на этот газ вместо бензина ещё далеко. Но тем не менее всё к тому идёт.

В основе используется реакция распада молекул воды на кислородные и водородные атомы. На сегодня применение этой реакции развивается по двум направлениям:

  • использующие в своей работе водород двигатели внутреннего сгорания;
  • водородные топливные элементы, питающие электродвигатель.

Рассмотрим каждое из них отдельно.

Здесь несколько нюансов. Внушительный нагрев и сжатие заставляют газ реагировать с металлическими составляющими агрегата и смазочной жидкостью. А при утечке, контактируя с раскалённым выпускным коллектором, конечно, он воспламеняется. Учитывая это, нужно использовать моторы роторные, у которых выпускной коллектор на приличном расстоянии от впускного. Что снижает вероятность воспламенения.

Также система зажигания требует некоторых изменений. И агрегат на водороде с внутренним сгоранием уступает по КПД электродвигателю на водородных элементах. Но всё это уже разрабатывается достаточно долго, поэтому не далёк тот день.

Вот пример — BMW 750hL, автомобиль с водородным двигателем. Сошедший с ленты конвейерной маленьким тиражом. Под капотом двигатель на двенадцать цилиндров. Топливом ему служит замес из кислорода и водорода, по составу идентичный ракетному горючему. Машина может набрать максимум 140 км/ч. Газовое ассорти, сжиженно-охлаждённое, содержится в добавочном баке. Его объёма достаточно для покрытия трёхсот километров, а если по пути смесь закончилась, мотор начинает потреблять чистый бензин из основного бака автоматом. Стоимость авто не превышает цен на машины такой же категории, но с карбюраторным движком — порядка 90 тыс. $.

Здесь принцип работы водородного двигателя — электролиз. Тот же, что у свинцовых аккумуляторов. Только КПД составляет 45%.

Через мембрану такой «батарейки» пройти могут только протоны. Электроды разных полюсов разделены этой мембраной. К аноду подаётся водород, на катод — кислород. Катализатор, покрывающий их (это платина), заставляет терять электроны. Катод притягивает протоны, пропущенные мембраной, и они начинают реагировать на электроны, итог реакции — образование воды и электрического тока. От анода электричество посредством проводов поступает уже к электромотору, т. е. питает его.

Агрегаты, питающиеся от водородных батарей, с рабочими названиями «Антэл-1» и «Антэл-2», уже работают на отечественных авто «Нива» и «Лада» в качестве концепта. Первая силовая установка преодолевает двести тысяч метров за один «полный бак», вторая триста.

У водородного карбюраторного мотора горючее только обогащается газовой смесью на 10%, но это на 30–50% понижает расход самого горючего. Получается, что на том же объёме топлива вы будете проезжать, например, не сто пятьдесят, а двести вёрст.

Вот какие достоинства водородного двигателя уже сегодня. А в будущем применение этого чудесного газа, как движущей силы для автомобиля, открывает широчайший ряд выгодных аспектов.

Для получения энергии нужна будет только вода

  • бесплатное сырьё — вода, из которой газ можно брать бесконечно;
  • во время реакции получаемые вещества вреда экологии не доставляют;
  • благодаря реактивному сгоранию КПД рассматриваемого агрегата на порядок выше карбюраторного;
  • колоссальная горючесть газа позволяет силовой установке бесперебойно работать при любых атмосферных показателях как минусовых, так и плюсовых;
  • детонация при сгорании водородной смеси в разы ниже, чем у бензина, что снижает шумы и вибрацию при работе агрегата;
  • здесь не требуется сложных систем трансмиссии, охлаждения и смазки, значит, повышается простота обслуживания благодаря уменьшению числа деталей.

Чтобы двигатель на водородных элементах работал в постоянном режиме, помимо прочего, ему нужны объёмные аккумуляторы и преобразователи. А в том виде, в котором они доступны сейчас, используется слишком много места для них. Здесь при изготовлении нужен принципиально новый подход.

Топливные элементы ещё слишком дорогие. Пока только ведётся поиск альтернативных материалов для их производства.

Не доработана пожаробезопасность силовой установки. И вопрос ёмкостей для водорода остаётся открытым. Само устройство водородного двигателя, можно сказать, ещё только приобретает будущие черты.

Примечательно, что водородный двигатель был изобретён гораздо раньше бензинового. Но развитие получил почему-то второй. Построенный во Франции ещё в 1806 году учёным Франсуа Исааком де Риваз агрегат уже тогда работал от гидролиза воды. А бензин для ДВС стали применять только в 1870.

Видео об использовании водорода в качестве топлива для авто:

Во времена, не столь далёкие, а именно в Великую Отечественную войну, есть свидетельство ещё одного удачного использования водорода, как источника получения энергии. В Ленинграде в блокаду бензина катастрофически не хватало. Поэтому было решено для работы аэростатов заграждения и приводящих лебёдок использовать водород, которого было достаточно. И это сыграло немаловажную роль по защите города.

Вот такая альтернатива нефтепродуктам есть у человечества на сегодня. И работа в этом направлении ведётся всё интенсивнее. Про то, как работает водородный двигатель сейчас и как он будет работать завтра, можно говорить только в общих чертах. Ясно одно — за водородом будущее нашей планеты.

Если имеется чем дополнить, комментарии ждут вас внизу.

Перспективы использования водородного двигателя

Последний энергетический кризис прокатился по миру в далеком 2008 году, и может показаться, что проблем с количеством нефти уже не возникает: нормы выработки становятся больше, а цена – ниже. Но несмотря на это, никто не может отрицать того, что запасы топлива на планете уменьшаются. Автомобильные концерны оплачивают исследования и разработки альтернативных видов топлива. Двигатель Риваза, работающий на воде, появился еще в начале XIX века. Изобретение было представлено в 1806 году и являлось первым двигателем внутреннего сгорания, обогнав бензиновые и газовые двигатели. Разработчики долгое время пытались продолжить разработку в этом направлении, но для того, чтобы провести электролиз и получить необходимое количество энергии требовалось много электричества, что делало такой вид топлива нерентабельным. В конце концов, это в сочетании с взрывоопасностью и поставило точку на исследованиях.

Возврат к водороду произошел в конце 50-х гг. прошлого века: топливный элемент был установлен на тракторы в США. Через три года – в 1962 году – водородный двигатель появился в маленьких автомобилях для гольфа, еще через пять – в мотоциклах. Водород в двигателях внутреннего сгорания (ДВС) может использоваться в двух вариантах: как гибридный двигатель и как топливный элемент.

Гибридный водородный двигатель

Гибридный водородный двигатель используется в качестве присадки в двигателях внутреннего сгорания к бензину или газу. При использовании водорода улучшается воспламеняемость топлива, но из-за высокой степени летучести газа повышается риск воспламенения. Но несмотря на этот недостаток, уменьшается коррозия металлов и вибрация. Для применения водорода нет необходимости в устройстве дополнительного топливного бака, водород вырабатывается из дистиллированной воды. При использовании водорода расстояние, которое можно проехать, увеличивается на 30 процентов. Безопасное использование газа возможно при низких температурах до -30⁰С и при относительно высоких до +30⁰С.

Топливный элемент

Двигатели с топливным элементом самостоятельно производят электроэнергию путем расщепления водорода на отрицательные электроны и положительные протоны. Использование таких двигателей приносит пользу при больших объемах, поэтому чаще всего применяются в большегрузах. На данный момент в Дании, США и Японии тестируют железнодорожные составы, которые работают на двигателях с топливным элементом. Это перспективный путь развития альтернативного топлива, потому что расход водорода меньше расхода бензина на единицу расстояния.

Еще одним направлением для разработки таких двигателей является авиация. В самолете ТУ-154 как раз таки и использовался такой топливный элемент, конечно же, после распада СССР все разработки в этом направлении были заморожены. Тем не менее над проектом пассажирского самолета, который будет работать на водороде, работают ученые Европейского Союза и Китая. Для того чтобы двигатель мог работать, такой самолет должен развить гиперскорость, что будет возможно сделать только при наличии дополнительного двигателя. Преимущества ДВС на водороде связаны с его воздействием на окружающую среду и высоким КПД.

Высокий уровень экологичности

Конечно, невысокая степень загрязнения присутствует, но из-за наличия в механизме автомобиля масла. Даже при добавлении водорода в обычное топливо производительность повышается на 20%. На 5 кг водородного топлива автомобиль проезжает до 500 км. Ученые считают водород единственным возобновляемым источником энергии.

При его неоспоримых преимуществах на сегодняшний день недостатков намного больше, которые в основном связаны с конструктивом двигателя:

  • Летучесть водорода. Заправить автомобиль с ДВС на водороде возможно только на заправке. Дозаправиться от другого автомобиля или из канистры по дороге не получится.
  • Взрывоопасность и пожароопасность. Всем известна катастрофа дирижабля «Гинденбург», который от одной искры загорелся в полете: из 97 человек, находящихся на борту, погибла треть.
  • Высокая стоимость топливных элементов и водородного двигателя, что, в свою очередь, увеличивает стоимость автомобиля. Аналог с водородным двигателем стоит в два раза дороже. Автомобиль на базе водородного двигателя обслуживать в 100 раз дороже, чем обычный двигатель.
  • Водородный двигатель занимает большой объем. В грузовиках и автобусах это не создает никаких неудобств, но в легковых автомобилях уменьшается объем багажного отделения.

Водородный двигатель – это не фантастика. Например, Honda, Toyota и Hyndai наладили линию по производству автомобилей с двигателями на базе водорода и плотно оккупировали рынок: Toyota Mirai (2015), Honda FCX Clarity (2008), Hyundai ix35 Fuel Cell. В середине декабря прошлого года Audi объявило о своем решении выпустить новый концепт на водороде – Q6 H-Tron.

Несмотря на все недостатки, водород – это единственный возобновляемый и неограниченный ресурс на планете. Для того чтобы автомобили с таким ДВС получили широкое распространение, ученым и разработчикам надо будет решить, как устранить негативные характеристики и уменьшить стоимость механизма, а государствам наладить инфраструктуру, чтобы машины на водороде перестали быть редкостью на дорогах.


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости