С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Для чего нужен турбонаддув


Что такое турбонаддув — ДРАЙВ

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Что такое турбонаддув?

Сегодня мы поговорим о том, как небольшой по своим размерам механизм, с виду очень похожий на улитку, способен повысить мощность двигателя в несколько раз. Мы спросили автоинструкторов, что же такое турбонаддув, как с данным механизмом обращаться, и вот что они нам рассказали.

Конструкция «турбины»

В первую очередь мы хотим отметить, что больших различий в конструкции турбонаддувов для разных моделей машин нет. Есть лишь вариации в размерах и дизайне некоторых узлов. По словам инструкторов по вождению, большинство автомобилистов используют термин «турбина», хотя это не совсем верно.

Турбиной называют одну из составляющих турбонаддува, состоящую из корпуса, системы уплотнений, вала с крыльчатками, двух улиток (в них вращаются крыльчатки), одного упорного и двух опорных подшипников скольжения. Сюда же крепится пневмопривод, который приводит в работу перепускной клапан. Заметим, что в некоторых моделях его нет. Основная цель перепускного клапана заключается в регулировке оборотов турбины и производительности компрессора.

Когда на выходе давление воздуха превышает оптимальное, то пневмопривод, который открывает клапан, срабатывает, таким образом, какая-то небольшая часть выхлопных газов выходит напрямую в выхлопную систему, и из-за этого обороты турбины становятся меньше.

Турбина — это крыльчатка на валу, приводящая во вращение компрессор. Турбина изготавливается из жаростойкого сплава, вал — из среднелегированной стали, а компрессор — из алюминия. Напомним, что данные детали не ремонтируются, а просто заменяются. Исключением является вал, который иногда получается перешлифовать и сделать под него новые подшипники.

Для чего нужен турбонаддув?

Как известно, для горения топлива нужен кислород. В цилиндрах сгорает топливно-воздушная смесь, а не топливо. Топливо смешивается с воздухом не на глазок, а в определенном соотношении. Например, для бензиновых двигателей — это 1:15 (топливо и воздух соответственно).

Как видно из примера, воздуха требуется довольно много. При увеличении подачи топлива, подача воздуха увеличивается. Стандартные двигатели получают его из-за небольшой разницы давлений в атмосфере и самом цилиндре. Данная зависимость прямая, ведь чем больше объем цилиндра, тем в него попадет больше кислорода.

Выхлопные газы, идущие из двигателя автомобиля, вращают определенным образом ротор турбины, а он приводит в движение другой механизм — компрессор, который доводит сжатый воздух непосредственно в цилиндры.

Но перед этим воздух проходит сквозь интеркулер, тем самым охлаждаясь.

Итак, чем больше в турбину попадает выхлопных газов, тем быстрее эта турбина вращается, то есть в цилиндры поступает больше воздуха, и соответственно мощность становится выше.

Почему турбонаддув столь непопулярен?

На «самообслуживание» наддува нужно совсем немного энергии мотора (около 1,5%). Кроме того, даровая энергия, затрачиваемая на сжатие воздуха, увеличивает КПД двигателя. Отсюда меньшие потери на трение, небольшой вес двигателя. Казалось бы, машины с турбонаддувом должны быть более экономичными, а это именно то, чего конструкторы хотели добиться. Но не все так гладко, как кажется на первый взгляд.

Скорость вращения турбины иногда достигает 200 000 об/мин, к тому же температура газов может достигать 1000°C. А чтобы сделать турбонаддув, способный выдерживать большие нагрузки долгое время, нужны не только значительные материальные средства, но и время.

Именно поэтому турбонаддув был широко распространен лишь в авиации во время 2-ой мировой войны. В 50-х г.г. прошлого столетия американская фирма Caterpillar стала использовать турбонаддув в тракторах, а Cummins — в своих грузовиках. Лишь в 1962 году турбонаддувами оснастили Chevrolet Corvair Monza и, взять хотя бы, Oldsmobile Jetfire.

Очевидные минусы

Дороговизна и сложность конструкции турбонаддува не являются основными недостатками данного устройства. Эффективность функционирования турбины зависит от оборотов мотора. Если обороты небольшие, и выхлопных газов мало, то ротор раскручивается слабо. В этом случае компрессор практически не дает цилиндрам дополнительный воздух. Именно поэтому бывает так, что до 3 000 оборотов двигатель не дотягивает, и «выстреливает» лишь после 4-5 тысяч. Это называется турбоямой.

Кстати, чем больше турбина, тем дольше она раскручивается, а это значит, что двигатели, оснащенные турбинами высокого давления, и с довольно высокой мощностью страдают турбоямой, как правило, в первую очередь.

У турбин, обеспечивающих низкое давление, подобных провалов тяги практически нет, однако и мощность они могут поднять не очень сильно. От турбоямы поможет избавиться схема с последовательным наддувом. В этом случае на малых оборотах начинает работать малоинерционный турбокомпрессор, который увеличивает тягу на «низах», а на высоких оборотах с повышением давления на выпуске включается другой механизм.

В прошлом столетии последовательный наддув применялся на суперкаре Porsche 959. В настоящее время можно упомянуть фирмы Land Rover и BMW. В случае бензиновых двигателей, к примеру, на Volkswagen, роль «заводилы» отдана приводному нагнетателю.

Пара «улиток»

На рядных двигателях часто ставится одиночный турбокомпрессор пара «улиток» (twin-scroll), где есть двойной рабочий аппарат. В каждую из этих «улиток» выхлопные газы попадают от различных групп цилиндров. При этом оба механизма дают газы одновременно на одну турбину, довольно эффективно раскручивая ее как на больших, так и на малых оборотах.

Чаще всего по-прежнему используется пара одинаковых турбокомпрессоров, которые параллельно обслуживают отдельные группы цилиндров.

Видеоматериал о том, как проверить давление турбонаддува в движении при помощи манометра:

Удачи на дорогах!

В статье использовано изображение с сайта mashintop.ru

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува. 

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува. Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

Что такое турбонаддув и для чего он нужен?

Турбированный дизельный двигатель является успешной попыткой разработчиков сделать дизель, который не будет уступать по отдаче двигателю внутреннего сгорания, который работает на бензине, при любых режимах работы. На обслуживание устройства наддува не понадобится большое количество энергии мотора. Помимо этого, вся даровая энергия, которая тратится непосредственно на сжатие воздуха, на порядок увеличивает коэффициент полезного действия двигателя автомобиля.

Следовательно, значительно снижаются потери, которые необходимы для трения, и это сопровождается небольшим весом самого двигателя. Казалось бы, что все автомобили с турбонаддувом должны были бы быть более экономичными и выгодными, так как это именно то, чего пытались добиться конструкторы. Тем не менее, не все так гладко, как хотелось и как кажется.

Современные турбины имеют иногда скорость вращения, которая может достигать 200 000 оборотов за минуту, при этом температура газов будет составлять до 1000 градусов. Для того, чтобы сделать устройство турбонаддува, которое будет способно выдерживать достаточно высокие нагрузки на протяжении длительного периода, необходимо не только значительная денежная сумма, но и определенное количество времени.

Именно исходя из этих соображений системы турбонаддува были широко распространены лишь в авиационных конструкциях периода 1941-1945 гг. После окончания войны данные устройства начали применятся и в разного рода тракторах и грузовиках.

1. История создания турбонаддува.

Турбокомпрессоры для повышения мощности двигателей внутреннего сгорания применялись уже на первых этапах развития данного вида технологий. Впервые запатентованный в первом десятилетии прошлого столетия турбокомпрессор сыграл особую роль в конструировании военной авиации. Первые серийные автомобили, которые имели турбированные дизели, изготавливались по большей части в Германии во второй половине двадцатого века.

2. Для чего нужен турбонаддув.

Сразу же следует отметить один момент: нет особых различий в конструктивной составной турбонаддувов для разных моделей автомобилей. Есть всего небольшие вариации, которые относятся к размерам, дизайну и некоторым узлам. Если прислушаться к инструкторам по вождению, то множество из них употребляют термин «турбина», для обозначения нужного нам узла. Важно заметить, что это является ошибочным утверждением.

Турбина – это всего лишь часть турбонаддува, которая состоит из корпуса, уплотнительной системы, вала с крыльчатками и двух улиток. Кроме того, в ее состав входят два опорные подшипника скольжения. В данное устройство не крепится пневмопривод, посредством которого в работу приходит перепускной клапан. Следует отметить, что некоторые модели вообще не имеют данное устройство в своем арсенале. Основной целью перепускного клапана является регулировка оборотов турбины и производительности компрессора.

Когда уже на непосредственном выходе давление воздуха переваливает за допустимое, то устройство пневмопривода, которое открывает клапан, задействуется, вследствие чего небольшая составная выхлопных газов напрямую выходит в выхлопную систему. Именно из-за этого обороты турбины на порядок снижаются.

Турбина являет собою крыльчатку, которая располагается на валу и приводит во вращение устройство компрессора. Данный агрегат изготовляется из жаростойкого сплава, в то время как вал изготовляется из среднелегированной стали, а устройство компрессора из алюминия. Важно заметить, что эти детали не могут быть отремонтированы, вследствие чего они попросту заменяются на новые. Исключением из этого является только вал, иногда который можно перешлифовать и под него сделать новые подшипники.

Не секрет, что для того, чтобы топливо горело необходимо условие наличия кислорода. Непосредственно в цилиндрах двигателя сгорает воздушно-топливная смесь, а не само топливо. Так, происходит смешивание топлива с воздухом в определенном соотношении. Важно заметить, что воздуха при этом требуется достаточно топлива. Существует простая закономерность: увеличение подачи топлива влечет за собой увеличение подачи воздуха. В стандартных двигателя внутреннего сгорания воздух получают цилиндры из-за небольшой разницы в давлениях в цилиндре и атмосфере.

Такого рода зависимость является прямой, так как больший объем цилиндра предполагает большое потребление кислорода. Все отработанные выхлопные газы, которые идут из двигателя внутреннего сгорания автомобиля, вращают ротор турбины определенным образом. Он, в свою очередь, знаменует начало движения механизма компрессора, посредством которого происходит доведение сжатого воздуха напрямую в цилиндры.

Тем не менее, перед этим сам воздух будет проходить через интеркулер, где будет охлаждаться. Таким образом, чем быстрее турбина вращается, тем больше в турбину будет попадать выхлопных газов. А это означает, что большее поступление воздуха в цилиндры будет знаменовать увеличение мощности двигателя внутреннего сгорания.

3. Принцип работы двигателя с турбонаддувом.

Принцип работы двигателя с турбонаддувом базируется на использовании энергии от выхлопных газов. Так, при покидании цилиндра, все отработанные газы будут направляться в крыльчатку турбины, где будут вращать ее и закрепленную на одном валу с ней турбину компрессора, который встроен в систему подачи воздуха к цилиндрам.

Так, в отличии от дизелей атмосферных, турбокомпрессорные агрегаты имеют подачу воздуха в цилиндры принудительную и под высоким давлением. В результате будет возрастать объем воздуха, который попадает непосредственно в цилиндр за один цикл. Если к этому добавить еще и увеличение объема сгорающего топлива, то прирост мощности будет достаточно существенным – в 25%. Для большего повышения объема воздуха, который поступает в цилиндры, дополнительно используется интеркулер.

Данное специальное устройство позвано охлаждать атмосферный воздух перед своим нагнетанием в мотор. Так, никому не секрет, что холодный воздух будет занимать значительно меньше места, чем воздух теплый. Таким образом, при непосредственном охлаждении в цилиндр будет доставляться большее количество воздуха.

Результат вполне очевиден. Турбодизель будет иметь менее эффективный расход топлива, при этом его объемная мощность будет достаточно высока. Все это обеспечит способность в существенном наращивании суммарной мощности двигателя без увеличения числа оборотов и его габаритов.

4. Минусы двигателя с турбонаддувом.

Сложность конструкции и дороговизна турбонаддува – это не самые существенные недостатки данного устройства. Важно заметить, что то, насколько эффективно будет функционировать турбина, напрямую зависит от оборотов двигателя внутреннего сгорания. Если выхлопных газов мало и обороты довольно невелики, то ротор будет достаточно слабо раскручиваться. В таком случае компрессор не будет давать цилиндрам дополнительную порцию воздуха. Именно из-за этого бывают случаи, когда двигатель не будет дотягивать до 3000 оборотов и будет выстреливать лишь после 4000. Такая заминка называется турбоямой.

Чем больший размер имеет турбина, тем больший промежуток времени уходит на ее раскрутку. Это будет означать, что все двигатели внутреннего сгорания, которые оснащиваются турбинами с высоким уровнем давление, и, следовательно, с высокой мощностью будут страдать турбоямой в первую очередь. Турбины, посредством которых обеспечивается низкий уровень давление, не будет подобных провалов.

Тем не менее, из-за этого и поднимаемая мощность будет не очень высокой. От турбоямы можно избавиться посредством схемы с последовательным наддувом. В таком случае на малых оборотах будет начинать работать малоинерционный турбокомпрессор, при помощи которого будет происходить увеличение тяги на низких оборотах, а на высоких, при помощи повышения давления на выпуске будет включаться иной механизм.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости