Дроссельная заслонка – это конструктивный элемент топливной системы автомобиля с бензиновым двигателем внутреннего сгорания, регулирующий поступление воздушных масс и образование воздушно-топливной смеси. Этот элемент впускной системы находится между коллектором и воздушным фильтром. Дроссель – одна из основных составляющих системы питания автомобиля.
Дроссельная заслонка
Дроссельная заслонка – своего рода воздушный клапан, позволяющий контролировать давление в системе. Если клапан открыт – уровень давления стремится к атмосферному, а при закрытом, – снижается, приближаясь к вакууму. Таким образом, дроссельная заслонка регулирует еще и работу вакуумного усилителя тормозной системы. А это значит, что чем меньше угол открытия клапана, тем ниже обороты.
Дроссельная заслонка – круглая пластина, имеющая способность вращаться на 90 градусов вокруг себя – это цикл от открытия и до закрытия. Находится она в корпусе, содержащим:
В совокупности все эти составляющие образуют дроссельный узел или блок дроссельной заслонки.
Корпус заслонки устроен довольно непросто. Ведь сам он входит в состав системы охлаждения. Именно дроссельный узел открывает каналы, по которым циркулирует охлаждающая жидкость. Оснащение корпуса специальными патрубками, связанными с вентиляционной системой и системой улавливания паров топлива, делает конструкцию еще более сложной. Следует подробнее изучить эту систему.
Дроссельная заслонка на автомобиле
При помощи регулятора холостого хода, поддерживается необходимая частота вращения коленчатого вала, при абсолютно закрытой заслонке. К примеру, если мотор нагревается или увеличивается нагрузка, к процессу подключается дополнительное оборудование.
Устроен регулятор следующим образом: корпус, куда крепится шаговый электрический мотор, соединенный с конусной иглой. Во время работы мотора на холостых оборотах, игла как поршень, регулирует площадь сечения воздушного канала.
Приводы бывают двух видов – механический и электрический. Отличие их только в принципе работы. Механический устроен гораздо проще и связан с педалью газ при помощи стального троса. Электрический же не имеет связи с газом напрямую. Как же тогда происходит регуляция? Здесь на помощь приходит потенциометр дроссельной заслонки. Этот специальный датчик связывается с блоком управления двигателем, и котроллер подает нужный сигал.
Иными словами, потенциометр изменяет угол открытия заслонки и тем самым воздействует на контроллер. При закрытой заслонке напряжение не превышает 0,7 В, а при полном открытии достигает 4В. Так и происходит контроль подачи топлива.
Если дроссельная заслонка перестала реагировать на импульсы, исходящие от датчика положения, могут возникнуть такие поломки как:
Если вы заподозрили, что дроссельная заслонка неисправна – нужно проверить весь узел, куда она крепится. Для этого точно соблюдайте следующий алгоритм:
После того, как вы установили узел на место, необходимо проверить герметичность системы охлаждения, куда вы снова залили жидкость. Не должно быть капель и потеков.
Для того чтобы дроссельная заслонка работала как часы, ее датчик периодически нужно подстраивать. Для этого выполняется несколько простых действий:
Для проверки исправности датчика измеряется уровень напряжения с помощью омметра. Если напряжение обнаружено – датчик следует заменить. При обратной ситуации можно продолжать регулировать датчик.
Для этого заслонка вращается до того момента, пока вы не увидите те самые показатели, которые прописаны в паспорте авто. Не забудьте проверить после регулировки плотность закрученных болтов и гаек, во время процесса они могли раскрутиться.
Как известно, топливная система автомобиля – это его жизнеспособность. Если она хоть немного нарушена, машина может вас неприятно удивить в самый неподходящий момент. Если из строя выйдет дроссельная заслонка или другой элемент узла, то последствия могут быт плачевными. Поэтому куда лучше, не скупиться на автомобильную диагностику, при возникновении малейших подозрений на неисправность. Помните – безопасность на дороге превыше всего.
Вам понравилась статья? Она была полезной?
Похожие статьи:
Большинство современных автомобилей, грузовиков и внедорожников контролируются и управляются десятками электронных компьютерных систем. Будь то электронная система зажигания или передовая система снижения токсичности отработавших газов, каждая система работает независимо, чтобы управлять отдельными компонентами, это позволяет водителям заводить и управлять своими транспортными средствами. Одной из наиболее важных систем, используемых сегодня, является электронный регулятор дросселя заслонки, который принимает электрический сигнал от нажатия на педаль газа и регулирует открытие и закрытие корпуса дросселя.
Регулятор дроссельной заслонки представляет собой электронную версию того, что используется для управления механическим кабелем. Функционирование дросселя осуществляется, как мы знаем, педалью газа. В более ранних моделях автомобилей эта педаль была подключена к кабелю, который проходил от педали к двигателю и был соединен с механической системой рычагов и тяг, установленной на карбюраторе или корпусе дроссельной заслонки. При нажатии на педаль газа дроссельный кабель управления натягивается на механической системе рычагов и тяг, описанной выше, которая подключена к так называемой «дроссельной заслонке» внутри корпуса дросселя.
Привод регулятора дроссельной заслонки
Когда она открывается и закрывается, датчик массового расхода воздуха отслеживает изменения в воздухе и передает эту информацию электронному блоку управления вашего автомобиля. Электронный блок управления увеличивает количество топлива, направляемого к форсункам, чтобы поддерживать необходимую топливовоздушную смесь. Как только электронный блок управления обрабатывает эту информацию, он производит необходимые изменения расхода топлива на топливные форсунки.
В большинстве случаев срок службы регулятора дросселя равен сроку службы автомобиля. Однако, как и любой другой механический и электрический компонент автомобиля, регулятор может износиться, выйти из строя или просто сломаться. Если это происходит, то существует несколько признаков, с помощью которых водитель поймет, что существует проблема с управлением дросселя, которую нужно устранить у механика. Перечисленные ниже признаки – это только некоторые из существующих предупреждающих признаков неисправного или сломанного регулятора дросселя.
Регулятор дросселя управляется электрически, чего не скажешь о старых механических кабелях, которые шли от педали газа к корпусу дросселя. В некоторых случаях электрический сигнал нарушается либо из-за проблем с электрическими проводами, либо с релейным управлением, либо из-за повреждения датчика. В любом случае это может привести к потере сигнала регулятором дросселя и создать прерывистое регулирование дросселем. Иногда это не доставляет особых хлопот, но бывает, что это может привести к остановке двигателя транспортного средства, а водитель может потерять способность контролировать педаль акселератора.
Датчик положения дроссельной заслонки
Если вы заметили, что при нажатии на педаль акселератора автомобиль не ускоряется, это может быть вызвано повреждением регулятора дросселя. Необходимы осмотр и обслуживание автомобиля профессиональным механиком.
В некоторых случаях поврежденный регулятор дросселя вызывает проблемы с ускорением двигателя или эффект «дергания», когда водитель воздействует на дроссель. Это может привести к недостаточной производительности и может стать проблемой безопасности, если не устранить ее быстро. Если вы не полностью контролируете дроссель, это может привести к несчастным случаям в результате заедания дросселя.
Когда регулятор дросселя поврежден, это может привести к увеличенному использованию топлива. В этом случае проблема может быть вызвана конфликтом между регулятором дросселя и топливовоздушной смесью двигателя, которая регулируется на большинстве автомобилей с помощью датчика массового расхода воздуха.
Когда возникает любой из этих признаков, двигатель с регулятором дросселя выдаст код ошибки OBD II, который хранится внутри электронного блока управления. Эти данные могут быть загружены и проверены профессиональным механиком при помощи цифрового сканера. При этом на приборной панели загорится сигнальная лампочка «Проверить двигатель».
После того, как удалось обнаружить источник кода ошибки, рекомендуется провести корректирующие действия и решить проблему с регулятором дросселя.
В большинстве случаев проблемы с регулятором дросселя электрические, возможно также, что вызваны повреждением датчика либо электрического реле. Однако совсем не редки случаи, когда регулятор дросселя поврежден, поэтому его следует заменить.
Доброго времени суток!В продолжение поисков причин завышенных оборотов ХХ добралися руки до регулятора дроссельной заслонки (ДЗ). Причинами нестабильной работы регулятора могут быть: дефект мембраны, неплотное закрытие клапанов, дефект катушек клапанов, засорен фильтр камеры вбираемого воздуха, дефект обратного клапана камеры разряжения, и призёр среди дефектов — дефект графитовых дороже потенциометра регулятора ДЗ.При наличии одного или нескольких вышеперечисленных дефектов регулятора возможна нестабильная работа двигателя на ХХ. В основном дефекты регулятора сказываются на работе ХХ, но в особых случаях взможен так же подсос лишнего воздуха при движении (с ХХ при этом тоже будут проблемы), что приведёт к обеднению топливной смеси и потере динамики.И так, обо всём по-порядку…
Карбюратор Pierburg 2EE, дианостика редулятора положения дроссельной заслонки.
Регулятор дроссельной заслонки
Оно же в помытом состоянии. Распиновка: 2 — ''-''; 3 — ''+'' катушки клапана камеры разряжения; 8 — ''+'' катушки клапана камеры забора воздуха из вне; 4,7 — контакты графитовых дорожек; 5 — контакт ползунка потенциометра.
При снятии крышки надо быть осторожным, чтобы не поломать корпус, т.к. пластмасса старенькая. Аккурвтно отгибаем края крышки плоской отвёрткой.
Под крышкой расположена резиновая прокладка.
Вот и интересности: 1 — катушка клапана вбираемого воздуха; 2 — катушка клапана разряжения; 3 — ползунок потенциометра; 4 — графитовы дорожки потенциометра.
В большинстве случаев графитовые дорожки покрываются налётом из грязи, что припятствует устойчивому контакту с ползунком, тем самым нарушая нормальный режим работы регулятора и как в следствии — работу ХХ. Один раз уже отец чистил дорожки, по-этому целенаправленно добирался до них, и за одно проверить всё остальное.
Для проверки обратного клапана камеры разряжения необходимо вкрутить болт в крышку и аккуратно потянуть на себя.
ВНИМАНИЕ! При снятии крышки будьте осторожны, т.к. есть вероятность потери элементов обратного клапана при резком выходе крышки из корпуса регулятора. Я потерял и нашёл всё под стулом)) Хорошо что не насупил.
Сверху видим все составляющие обратного клапана. Снизу видим фильтр камеры вбираемого воздуха.
Фильтр камеры вбираемого воздуха.
Стопорное кольцо не обязательно снимать сразу) Если снять, то пружина упрётся в корпус и шток будет свободно перемещаться.
Стопорное кольцо на месте.
Немного диагностики.
Проверка сопротивления катушек клапанов (20-70 Ом): контакты 2+3 — разряжения; 2+8 — вбираемого воздуха.
Проверка сопротивления скользящего контакта в диапазоне регулирования (мин. — менее 400 Ом; макс — 1,4-2,4 кОм): контакты 3+5.
Проверка полного сопротивления потенциометра (1,4-2,6 кОм): контакты 3+4.
Данные для проверки карбюратора.
Дорожки чистил таким вот образом: сложил бумагу несколько раз, чтобы вдруг не порвало, и поступательно-возвратными движениями прочистил дорожки.
Контрольная зачиста: растворитель, чтобы снять масляную плёнку, если она там была)
После чистки сопротивление потенциометра изменилось на 100 Ом. Не знаю хорошо это или плохо)
Проверка герметичности клапанов: слева показания потенциометка (контакты 3+5) в исходном положении (без разряжения). Справа — с разряжением. При закрытии клапана разряжения показания не изменились — клапан герметичен. При проверке клапана вбираемого воздуха показания изменились, но вроде как допускается изменение на 200 Ом в течение минуты.
ИНСТРУКЦИЯ по проверке герметичности клапанов и подвижного штока
Подключить между вводами 2(минус)+3(плюс), затем 2(минус)+8(плюс) аккумуляторную батарею напряжением 12 В. Клапаны при этом должны закрываться с хорошо слышимым щелчком. Если этого не происходит, то регулятор ДЗ под замену.При наличии на контактах 2+3 напряжения 12 В подключить омметр к контактам 3+5. Подключить ручной вакуумный насос к клапану разряжения и создать разность давления до достижения показаний омметра 500-700 Ом. Шток регулятора при этом не должен втягиваться полностью. Отключить аккумуляторую батарею и снять с клапана вакуумный насос и наблюдать после этого показания омметра. Сопротивление в течение 1 минуты должно измениться максимум на 200 Ом. При отклонении этих показаний — регулятор под замену.Для последующей проверки регулятора подать напряжение на контакты 2+3 и следить за показанием омметра. В течение 5 сек сопротивление должно измениться до 650 Ом. Если показания превысят это нормативное значение, то необходимо заменить обратный клапан.
При дальнейшей проверке полностью втягивается шток регулятора положения ДЗ. Подключается ручной вакуумный насос к клапану разряжения и создаётся разряжение 250 мбар. Подключить аккумуляторную батарею к контактам 2+8 (клапан вбираемого воздуха). В течение 1 сек шток регулятора должен выдвинуться наружу. Если шток выдвигается медленно, то необходимо отсоединить шланг от клапана вбираемого воздуха и проверить его на проходимость, а так же проверить отсутствие засорения фильтра в регуляторе. При необходимости эти элементы заменяются на новые. Если занены не устраняют неисправность — регулятор под замену.
Проделав все эти монипуляции с регулятором пришёл к выводу, что регулятор исправен и не должен пагубно сказываться на ХХ. Значит дело в чём-то другом.Предполагаю что возможно дело в лямбда-зонде (ЛЗ), которая даёт сигнал о бедной смеси и по-этому регулятор пытается обогатить топливную смесь, что приводит к повышенным оборотам ХХ. Теперь надо определить возможную причину бедной смеси: подсос воздуха, неисправность ЛЗ. Насчёт подсоса склоняюсь к его отсутствию, т.к. всё что можно уже поменял и затянул хомутами. А вот с ЛЗ интереснее, но это совсем другая история…)
В качестве бонуса:
Схема работы электроники карбюратора.
Дословный перевод: Регулятор держит курс на воздушный клапан и вентиляционный клапан соответственно заявленного рабочего состояния. Мембрана вызывает закрытие и перо открытие дроссельного клапана. Чем более незначительно низкое давление, тем дальше дроссельный клапан открывается и переворачивается. Связанный с мембраной потенциометр изменяет его стоимость соответственно позиции дроссельных клапанов. Эта стоимость сопротивления считается информационной величиной для регулятора belm Soll-Ist-Vergleich, например, во время регулирования холостого хода. Чем дальше дроссельный клапан закрытый, — это тем более незначительно сопротивление.
На современных авто питание силовой установки осуществляется двумя системами – впрыска и впуска. Первая из них отвечает за подачу топлива, в задачу второй входит обеспечение поступления воздуха в цилиндры.
Несмотря на то, что подачей воздуха «заведует» целая система, конструктивно она очень проста и основным ее элементом выступает дроссельный узел (многие по старинке называют его дроссельной заслонкой). И даже этот элемент имеет несложную конструкцию.
Принцип работы дроссельной заслонки остался идентичным еще со времен карбюраторных двигателей. Она перекрывает основной воздушный канал, благодаря чему и регулируется количество подаваемого в цилиндры воздуха. Но если эта заслонка раннее входила в конструкцию карбюратора, то в инжекторных двигателях она является полностью отдельным узлом.
Инжекторная система ДВСПомимо основной задачи – дозировки воздуха для нормального функционирования силового агрегата на любом режиме, эта заслонка также отвечает за поддержание требуемых оборотов коленвала на холостом ходу (ХХ), причем с разной нагрузкой на мотор. Участвует она и в функционировании усилителя тормозной системы.
Устройство дроссельной заслонки – очень простое. Основными ее конструктивными составляющими являются:
Механический дроссельный узел
Дроссели разных типов также могут включать ряд дополнительных элементов – датчики, байпасные каналы, каналы подогрева и т. д. Более подробно конструктивные особенности дроссельных заслонок, применяемых на авто, рассмотрим ниже.
Устанавливается дроссельная заслонка в воздуховоде между фильтрующим элементом и коллектором двигателя. Доступ к этому узлу ничем не затруднен, поэтому при проведении обслуживающих работ или замене добраться до него и демонтировать с авто несложно.
Как уже отмечено, существуют разные виды дроссельной заслонки. Всего их три:
Именно в таком порядке и развивалась конструкция этого элемента системы впуска. Каждый из существующих видов имеет свои конструктивные особенности. Примечательно, что с развитием технологий устройство узла не осложнялось, а наоборот – становилось проще, но с некоторыми нюансами.
Начнем с заслонки с механическим приводом. Этот тип детали появился с началом установки инжекторной системы питания на автомобили. Основная его особенность заключается в том, что заслонкой водитель управляет самостоятельно при помощи тросового привода, соединяющего педаль акселератора с сектором газа, соединенного с осью заслонки.
Конструкция такого узла полностью позаимствована с карбюраторной системы, разница лишь в том, что заслонка – отдельный элемент.
В конструкцию этого узла дополнительно входят датчик положения (угла открытия заслонки), регулятор холостого хода (ХХ), байпасные каналы, система подогрева.
Дроссельный узел с механическим приводом
В целом, датчик положения дросселя присутствует во всех типах узлов. В его задачу входит определение угла открытия, что дает возможность электронному блоку управления инжектором определить количество подаваемого в камеры сгорания воздуха и на основе этого откорректировать подачу топлива.
Ранее использовался датчик потенциометрического типа, в котором определение угла открытия осуществлялось за счет изменения сопротивления. Сейчас обычно применяются магниторезистивные датчики, которые являются более надежными, поскольку в них отсутствуют контактные пары, подверженные износу.
Датчик положения дроссельной заслонки потенциометрического типа
Регулятор ХХ в механических дросселях представляет собой отдельный канал, идущий в обход основного. Этот канал оснащается электроклапаном, корректирующим поступление воздуха в зависимости от условий функционирования двигателя на ХХ.
Устройство регулятора холостого хода
Суть его работы такова – на ХХ заслонка полностью закрыта, но для работы мотора требуется воздух, он и подается по отдельному каналу. При этом ЭБУ определяет обороты коленвала, на основе чего регулирует степень открытия этого канала электроклапаном, чтобы поддерживать заданные обороты.
Байпасные каналы работают по тому же принципу, что и регулятор. Но в их задачу входит поддержание оборотов силовой установки при создании нагрузки на холостом ходу. К примеру, при включении климат-системы, нагрузка на мотор повышается, из-за чего обороты падают. Если регулятор не способен обеспечить мотор необходимым количеством воздуха, то задействуются байпасные каналы.
Но эти дополнительные каналы имеют существенный недостаток – сечение их небольшое, поэтому возможно их засорение и обледенение. Для борьбы с последним, дроссельная заслонка подключается к системе охлаждения. То есть, по каналам в корпусе циркулирует охлаждающая жидкость, отогревая каналы.
Компьютерная модель каналов в дроссельной заслонке
Основным недостатком механического дроссельного узла является наличие погрешности при приготовлении топливовоздушной смеси, что сказывается на экономичности двигателя и выходе мощности. Все из-за того, что ЭБУ не управляет заслонкой, на него лишь подается информация об угле открытия. Поэтому при резких изменения положения дросселя блок управления не всегда успевает «подстроиться» под изменившиеся условия, что и приводит к перерасходу топлива.
Следующим этапом развития дроссельный заслонок стало появление электромеханического типа. Механизм управления у него остался прежний – тросовый. Но в этом узле отсутствуют какие-либо дополнительные каналы за ненадобностью. Вместо всего этого в конструкцию добавили электронный механизм частичного управления заслонкой, управляемый ЭБУ.
Конструктивно этот механизм включает в себя обычный электромотор с редуктором, который соединен с осью заслонки.
Работает этот узел так: после запуска двигателя, блок управления для установления требуемых оборотов холостого хода рассчитывает количество подаваемого воздуха и приоткрывает заслонку на нужный угол. То есть, блок управления в таком типе узла получил возможность регулировать работу двигателя на холостых оборотах. На остальных же режимах функционирования силовой установки дросселем управляет сам водитель.
Использование механизма частичного управления позволило упростить конструкцию самого дроссельного узла, но не устранило основной недостаток – погрешности в смесеобразовании. Его в заслонке такой конструкции нет только на холостом ходу.
Последний тип – электронный, внедряется на автомобили все больше. Его основная особенность заключается в отсутствии прямого взаимодействия педали акселератора с осью заслонки. Механизм управления в такой конструкции уже полностью электрический. В нем используется все тот же электродвигатель с редуктором, связанный с осью, и управляемый ЭБУ. Но открытием заслонки блок управления «заведует» уже на всех режимах. В конструкцию дополнительно добавили еще один датчик – положения педали акселератора.
Элементы электронной дроссельной заслонки
В процессе работы блок управления использует информацию не только с датчиков положения заслонки и педали акселератора. В учет берутся также сигналы, поступающие со следящих устройств автоматических трансмиссий, тормозной системы, климатического оборудования, круиз-контроля.
Вся поступающая информация с датчиков обрабатывается блоком и на ее основе устанавливается оптимальный угол открытия заслонки. То есть, электронная система полностью контролирует работу системы впуска. Это позволило устранить погрешности в смесеобразовании. На любом режиме работы силовой установки в цилиндры будет подаваться точное количество воздуха.
Но и без недостатков у этой системы не обошлось. Причем их чуть больше, чем в других двух видах. Первая из них заключается в том, что заслонка открывается при помощи электродвигателя. Любые, даже незначительные неисправности составляющих привода, приводят к нарушению работы узла, что сказывается на функционировании двигателя. В тросовых механизмах управления такой проблемы нет.
Второй недостаток – более существенный, но касается он по большей части бюджетных автомобилей. И сводится он к тому, что из-за не очень хорошо проработанного программного обеспечения дроссель может работать с запозданием. То есть, после нажатия на педаль акселератора ЭБУ требуется некоторое время на сбор и обработку информации, после чего он подает сигнал на электродвигатель механизма управления дросселем.
Основная причина задержки от нажатия на электронную педаль газа до реакции двигателя — более дешевые электронные комплектующие и не оптимизированное программное обеспечение.
В обычных условиях этот недостаток особо не заметен, но при определенных условиях такая работа может привести к неприятным последствиям. К примеру, при начале движения на скользком участке дороги иногда возникает потребность быстрой смены режима работы мотора («поиграться педалью»), то есть, в таких условиях нужен быстрый «отклик» мотора на действия водителя. Существующая же задержка в срабатывании дросселя может привести к осложнению в управлении автомобилем, поскольку водитель «не чувствует» двигатель.
Еще одна особенность электронной дроссельной заслонки некоторых моделей авто, которая для многих является недостатком – особые заводские установки работы дросселя. В ЭБУ заложена установка, которая исключает вероятность пробуксовки колес при старте. Достигается это тем, что при начале движения блок специально не открывает заслонку для получения максимальной мощности, по сути, ЭБУ дросселем «придушивает» двигатель. В некоторых случаях эта функция сказывается негативно.
На премиумных авто проблем с «откликом» системы впуска нет из-за нормальной проработки программного обеспечения. Также на таких авто нередко можно установить режим работы силовой установки по предпочтениям. К примеру, при режиме «спорт» перенастраивается работа и системы впуска, и в этом случае ЭБУ на старте уже не «душит» двигатель, что позволяет авто «резво» начать движение.
"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453