С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

То же что и двигатель


Что считается идеальным двигателем? То же,что и вечный? Возможно ли его существование?

Вечный двигатель - это такая система, которая может совершать работу без притока внешней энергии и это невозможно из-за закона сохранения энергии. Ибо энергия не появляется просто так, а только может переходить из одного состояния в другое. Под идеальным двигателем обычно  подразумевается модель  - двигатель Карно - это двигатель, который работает  по циклу термодинамическому, состоящему из двух адиабат и двух изотерм, не вдаваясь в теорию,  такое сочетание процессов позволяет извлечь из двигателя максимальное КПД при заданных условиях (температуре окружающей среды (холодильника) и  температуре нагревателя). Чем больше эта разность, тем лучше.  Создать его в идеальном смысле невозможно, но приближаться к его параметрам стараются. Слово идеальный здесь  подразумевает именно то,  что это модель, которая теоретически осуществима, но при иделаьных условиях (отсуствии трения, наличия адиабатической оболочки(которая полностью изолирует одну среду от другой) и т.д.). Но разность между вечным двигателем и идеальным огромная. 

Вечный двигатель невозможен. Вероятно, существуют разработки некоторых двигателей, которые смогут проработать несколько десятков лет без добавления топлива, но вечных быть не может, ведь это противоречит 1 закону термодинамики

Так как вечный двигатель невозможен, то идеальным можно было бы назвать двигатель со 100% КПД, что тоже в принципе невозможно. Если условно считать двигатель устройством преобразующим энергию из одного вида в другой, то ближе всего к этой цифре приблизились эл. трансформаторы, около 99%. Хотя их можно назвать с большой натяжкой. Также высокий КПД у систем с рекуперацией, в которых энергия без необходимости возвращается обратно в сеть, например, при торможении. На этом принципе работают автомобили гибриды.

Почему один и тот же двигатель может выдавать разную мощность?

Не секрет, что Форд Мондео в России с атмосферным мотором объемом 2.5 литра выдает 149 л.с. А в США с тем же двигателем мощность составляет 177 л.с. Вы спросите откуда разница в 28 лошадиных сил, если силовой агрегат конструктивно одинаков!? Вот об этой ситуации хотелось бы поговорить подробнее. Налоговое законодательство в России устроено таким образом, что если ваш легковой автомобиль имеет двигатель мощнее 150 л.с., то транспортный налог для вас имеет повышенную ставку. То есть на несколько лишних лошадей вам придется каждый год платить не маленькие суммы. Многие иностранные производители идут на встречу потребителям и предлагают моторы со сниженной мощностью. Но как они этого добиваются не меняя конструкцию мотора?

Все дело в электронном управлении двигателя, который отвечает за работу силового агрегата. Если ЭБУ ДВС запрограммировать определенным образом, он изменит режимы работы двигателя, что повлияет на его мощность, расход топлива, крутящий момент. Таким образом на российские Форд Мондео и ряд других моделей с разными двигателями ставят особые блоки управления позволяющие занижать реальную мощность. Таким образом поступают и другие производители.

Возникает резонный вопрос, а можно ли повысить мощность мотора, поменяв или перепрограммировав (чип тюнинг) электронный блок управления двигателем? Сегодня есть компании, которые занимаются профессиональной прошивкой блока управления двигателем http://bood.ru/tuning-boxes/, что приносит реальный результат в виде дополнительной мощности.

Надо учитывать, что чем больше объем двигателя, тем лучше он подается чип-тюнигу. Ведь в таких моторах заложен значительный запас прочности и увеличение мощности не сильно повлияет на моторесурс самого мотора. Возвращаясь к примерам из жизни можно посмотреть на тот же Форд Мондео с двухлитровым турбодвигателем Экобуст, который предлагается с разной мощностью 199 и 240 л.с. То есть одинаковый мотор, но с разной прошивкой блока управления может легко прибавить 41 лошадиную силу. Кстати, это не предел.

Если с бензиновыми двигателя более менее понятно, то что с дизельными силовыми агрегатами? В плане перепрошивки эти моторы имеют довольно хороший потенциал. Ведь кроме чип-тюнинга можно установить турбину большей производительности, что позволит существенно поднять мощность и увеличить крутящий момент. При этом расход топлива существенно не увеличится, а в некоторых случаях может даже уменьшится. Естественно доверять такую модернизацию своего автомобиля необходимо специалистам имеющим соответствующее высокотехнологичное оборудование и реальный опыт работы в этой сфере.

Виды двигателей автомобилей

Еще каких-то 10 лет назад турбиной, или компрессором мог похвастаться только спортивный, или тюнингованный автомобиль. Но сегодня мало кого удивишь «дополнительной мышцей» двигателя, ведь на многие автомобили завод-производитель сам устанавливает агрегат, увеличивающий мощность мотора. И если вы хотите знать, в чем отличие между атмосферным, турбированным и компрессорным двигателем, то вы попали куда нужно, потому что именно об этом мы вам и расскажем.

Для начала упомянем, что автомобильные двигатели можно разделить на 2 группы: атмосферные и наддувные. Конструктивно эти типы очень сильно отличаются, да и прирост мощности двигателя дают разный.

Атмосферный двигатель является едва ли не самым сложным по своему устройству. В атмосферном двигателе  топливно-воздушная смесь подается в цилиндры без малейших сопротивлений, а это означает, что серьезным доработкам подвергся коллектор. Во-вторых, очень тонко настраивается распредвал, с целью обеспечить максимально длительное открытие впускного клапана. Наконец, увеличивается ход поршня и диаметр цилиндра, с целью обеспечить еще большую мощность двигателя. Как видим, атмосферный двигатель очень сложен в конструктивном плане, но эластичен и отзывчив в работе.

Главная изюминка атмосферного двигателя в том, что он имеет запас мощности на любых оборотах, мгновенно реагирует на нажатие педали акселератора. Это значит, что атмосферный двигатель лучше всех раскручивается до максимальных оборотов. Вместе с этим, среди имеющихся недостатков, наиболее серьезными является высокий расход топлива и относительно не высокий ресурс мотора.

Немного о турбированных двигателях

Турбированный двигатель – это классика жанра. Большинство автовладельцев отдают свое предпочтение именно турбированным моторам. Принцип работы турбированного двигателя примерно тот же, что и у атмосферного. Топливно-воздушная смесь под давлением попадает в цилиндры двигателя. Разница только в давлении. Кроме того, в зависимости от желаний владельца, можно увеличить давление, нагнетаемое турбиной, что даст прирост мощности.

Тем не менее, хоть турбированные двигатели и являются наиболее распространенными из рассматриваемых нами типов, турбо моторы все же имеют некоторые недостатки:

  • Во-первых, турбина дает прирост мощности только на высоких оборотах двигателя, при малых оборотах она практически не чувствуется.
  • Во-вторых, для турбированных моторов характерно такое явление, как турбопровал. Это значит, что турбина не сразу же дает прирост мощности, после того, как вы нажали педаль газа в пол, а спустя несколько десятых секунд. Возможно, для городской езды это мелочь, но в автоспорте это серьезный недостаток. Наконец, турбированные двигатели очень чувствительны к системе смазки.

Компрессорные двигатели

Компрессор на двигателе – это своего рода механический нагнетатель, который приводится в движение ременным приводом. Это значит, чем выше будут обороты двигателя, тем больше мощности он получит. Компрессор не только подает топливно-воздушную смесь в цилиндры под давлением, но и продувает их, когда впускной и выпускной клапан находятся в положении наполовину открытия и закрытия. Таким образом, компрессор не только увеличивает мощность, но и прочищает цилиндры, что позволяет двигателю постоянно работать на максимуме своих возможностей.

Недостатком компрессора является то, что он эффективно себя показывает только на двигателях большого объема. Следовательно, об экономичности такого двигателя также следует забыть.

Бесколлекторные двигатели постоянного тока. Что это такое?

Этой статьёй я начинаю цикл публикаций о бесколлекторных двигателях постоянного тока. Доступным языком  опишу общие сведения, устройство, алгоритмы управления бесколлекторным двигателем. Будут рассмотрены разные типы двигателей, приведены примеры подбора параметров регуляторов. Опишу устройство и алгоритм работы регулятора,  методику выбора силовых ключей и основных параметров регулятора. Логическим завершением публикаций будет схема регулятора.

Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и, в том числе, благодаря появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло появление мощных неодимовых магнитов.

Однако не стоит считать бесколлекторный двигатель новинкой. Идея бесколлекторного двигателя появилась на заре электричества. Но, в силу неготовности технологий, ждала своего времени до 1962 года, когда появился первый коммерческий бесколлекторный двигатель постоянного тока. Т.е. уже более полувека существуют различные серийные реализации этого типа электропривода!

Немного терминологии

Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).

Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор – магниты, статор – обмотки.

Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).

Что такое бесколлекторный двигатель?

Обычно люди, сталкиваясь с чем-то новым, ищут аналогии. Иногда приходится слышать фразы “ну это как синхронник”, или еще хуже “он похож на шаговик”. Поскольку большинство бесколлекторных двигателей трехфазные, это еще больше путает, что приводит к неправильному мнению о том, что регулятор “кормит” двигатель переменным 3-x фазным током. Все вышесказанное соответствует действительности только отчасти. Дело в том, что синхронными можно назвать все двигатели кроме асинхронных. Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. Как шаговый бесколлекторный двигатель тоже, наверное, сможет работать. Но тут такое дело: кирпич он тоже может летать… правда, недалеко, ибо для этого не предназначен. В качестве шагового двигателя больше подойдет вентильный реактивный двигатель.

Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ – это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.

Преимущества и недостатки

Из конструкции двигателя удаляется довольно сложный, требующий обслуживания тяжелый и искрящий узел – коллектор. Конструкция двигателя существенно упрощается. Двигатель получается легче и компактнее. Значительно уменьшаются потери на коммутацию, поскольку контакты коллектора и щетки заменяются электронными ключами. В итоге получаем электродвигатель с наилучшими показателями КПД и показателем мощности на килограмм собственного веса, с наиболее широким диапазоном изменения скорости вращения. На практике бесколлекторные двигатели греются меньше, чем их коллекторные братья. Переносят большую нагрузку по моменту. Применение мощных неодимовых магнитов сделали бесколлекторные двигатели еще более компактными. Конструкция бесколекторного двигателя позволяет эксплуатировать его в воде и агресивных средах (разумеется, только двигатель, регулятор мочить будет очень дорого). Бесколлекторные двигатели практически не создают радиопомех.

Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники – просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.

Что происходит в регуляторе бесколлекторного двигателя?

Для того чтобы понять, что происходит в электронике регулятора, управляющего бесколлекторным двигателем, вернемся немного назад и сначала разберемся как работает коллекторный двигатель. Из школьного курса физики помним, как магнитное поле действует на рамку с током. Рамка с током вращается в магнитном поле. При этом она не вращается постоянно, а поворачивается до определенного положения. Для того чтобы происходило непрерывное вращение, нужно переключать направление тока в рамке в зависимости от положения рамки. В нашем случае рамка с током – это обмотка двигателя, а переключением занимается коллектор – устройство со щетками и контактами. Устройство простейшего двигателя смотри на рисунке.

То же самое делает и электроника, управляющая бесколлекторным двигателем – в нужные моменты подключает постоянное напряжение на нужные обмотки статора.

Датчики положения, двигатели без датчиков

Из вышесказанного важно уяснить, что подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора. Поэтому электроника должна уметь определять положение ротора двигателя. Для этого применяются датчики положения. Они могут быть различного типа, оптические, магнитные и т.д. В настоящее время очень распространены дискретные датчики на основе эффекта Холла (например SS41). В трехфазном бесколлекторном двигателе используется 3 датчика. Благодаря таким датчикам электронный блок управления всегда знает, в каком положении находится ротор и на какие обмотки подавать напряжение в каждый момент времени. Позже будет рассмотрен алгоритм управления трехфазным бесколлекторным двигателем.

Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.

В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких – без датчиков? В чем их отличие?

Двигатели с датчиками положения более предпочтительны с технической точки зрения. Алгоритм управления такими двигателями значительно проще. Однако есть и свои минусы: требуется обеспечить питание датчиков и прокладку проводов от датчиков в двигателе к управляющей электронике; в случае выхода со строя одного из датчиков, двигатель прекращает работу, а замена датчиков, как правило, требует разборки двигателя.

В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.

Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) – применяют двигатели с датчиками. Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это условие не соблюдается, следует использовать двигатель с датчиками. Кроме того, в момент старта двигателя без датчиков возможны вращательные колебания оси двигателя в разные стороны. Если это критично для Вашей системы, применяйте двигатель с датчиками.

Три фазы

Трехфазные бесколлекторные двигатели приобрели наибольшее распространение. Но они могут быть и одно, двух, трех и более фазными. Чем больше фаз, тем более плавное вращение магнитного поля, но и сложнее система управления двигателем. 3-х фазная система наиболее оптимальна по соотношению эффективность/сложность, поэтому и получила столь широкое распространение. Далее будет рассматриваться только трехфазная схема, как наиболее распространенная.  Фактически фазы – это обмотки двигателя. Поэтому если сказать “трехобмоточный”, думаю, это тоже будет правильно. Три обмотки соединяются по схеме “звезда” или “треугольник”. Трехфазный бесколлекторный двигатель имеет три провода – выводы обмоток, см. рисунок.

Двигатели с датчиками имеют дополнительных 5 проводов (2-питание датчиков положения, и 3 сигналы от датчиков).

В трехфазной системе в каждый момент времени напряжение подается на две из трех обмоток. Таким образом, есть 6 вариантов подачи постоянного напряжения на обмотки двигателя, как показано на рисунке ниже.

Это позволяет создать вращающееся магнитное поле, которое будет проворачиваться “шагами” на 60 градусов при каждом переключении. Но не будем забегать наперед. В следующей статье будут рассмотрены устройство бесколлекторного двигателя, варианты расположения магнитов, обмоток, датчиков и т.д., а позже будут рассмотрены алгоритмы управления бесколлекторными двигателями.

Бесколлекторные моторы “на пальцах” Что такое бесколлекторные моторы и как управлять бесколлекторными моторами:


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости