С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Турбонагнетатель что это такое


Что такое турбонагнетатель давления в двигателе, как он работает. — бортжурнал Hyundai Tiburon 2.0 турбо 2004 года на DRIVE2

Что такое турбонагнетатель давления в двигателе,как он работает.

Так что же такое турбонагнетатель или турбокомпрессор? Фактически это тот же компрессор, призванный нагнетать воздух, но его привод осуществляется не от коленчатого вала через ременную передачу, а используя энергию потока отработавших газов.Работа турбонагнетателя предельно проста. Выхлопные газы, проходя в турбину, приводят во вращение ротор. Колесо центробежного компрессора жестко закреплено на оси ротора и вращается с той же скоростью. Нужно сразу сказать, что сама компрессорная часть может быть различной по конструкции, но именно центробежный тип стал превалирующим. Чем большей энергией обладают выхлопные газы, тем быстрее вращаются колеса турбины и, соответственно, компрессоры. Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, тем выше мощность. При этом частота вращения турбокомпрессора может быть очень и очень высокой – 150 тыс. об/мин и более. Колесо турбины соединено с валом сваркой трением. Использование иных методов не дает необходимой точности соединения.Дело в том, что конструкция вал–турбина должна быть идеально сбалансирована. Иначе, памятуя о высоких скоростях крыльчатки, даже небольшое биение приведет к гарантированной поломке. Вал в месте соединения с колесом обычно выполняется пустотелым. Этот прием позволяет понизить теплоотдачу от колеса турбины на вал и предотвратить нежелательный перегрев подшипников. К слову, о подшипниках. Так уж получается, что колесо турбины, подвергаясь прямому воздействию горячих отработавших газов, не несет столь большой тепловой и, особенно, механической нагрузки, какую испытывает вал. Турбокомпрессоры выполняют по нескольким конструктивным схемам. И в основном отличия этих подходов сводятся к размещению опор крепления вала. В турбонагнетателях именно вал и опоры являются крайне уязвимым звеном.Подвергаясь воздействию высоких температур от выхлопных газов и серьезным механическим нагрузкам, обусловленным высокими скоростями вращения роторов, эти опоры представляют серьезную проблему для разработчиков. Сейчас можно встретить схемы с подшипниками качения, но наибольшее распространение получили подшипники скольжения (например, бронзовые втулки и т. п.). Как правило, втулки выполняют плавающими (т. е. с зазором и относительно корпуса, и относительно самого вала). Это позволяет поддерживать необходимый масляный клин и сократить внутренние линейные скорости вращения, что ведет к снижению нагрузок на весь подшипниковый узел. Смазка подшипникового узла осуществляется от системы смазки ДВС. Причем, как и в самом двигателе, масло служит даже больше для отвода тепла от подшипников и корпуса, нежели для непосредственно смазки трущихся поверхностей.Удержание масла внутри подшипникового узла и недопущение его в зоны компрессора и турбины также важный и сложный вопрос. Тем более, что сейчас можно встретить конструкции с неподвижным подшипником, где ротор вращается в масляной ванне. Различные типы газо-масляных уплотнений не только должны эффективно сдерживать масло, но и противостоять воздействию высоких температур. На малых оборотах проблема утечек масла встает более остро, поскольку на этих режимах уже внутри подшипникового узла давление более высокое.Сегодня большинство турбокомпрессоров имеют механизм изменения геометрии турбины, дополнительное кольцо с управляемыми направляющими лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. Так, на низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких же оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины. Такое гибкое управление позволяет не только расширить диапазон эффективной работы турбонагнетателя, но и существенно снизить потребление топлива и вредные выбросы.Еще одно интересное конструктивное решение касается корпуса турбины. В основном такие турбины применяются на больших двигателях грузовых автомобилей, но теперь их все чаще можно встретить и на легковых машинах. Речь идет о корпусе турбины с двумя параллельными каналами. Дело в том, что поток выхлопных газов неравномерен. Четыре такта работы ДВС подразумевают поочередную работу цилиндров, что делает поток отработавших газов импульсным. Эти колебания давления могут перекрывать друг друга, что способно снизить эффективность турбины. Два параллельных канала позволяют разделить потоки от разных цилиндров (например, на один канал работают 1-й и 4-й цилиндры, а на второй – 2-й и 3-й). Каждый поток распределяется по всей поверхности рабочего колеса турбины, полностью используя импульсы давления. Такой тип наддува называется ипульсным. Здесь уместно вспомнить конструкции прошлых лет, чтобы увидеть, по какому извилистому пути шла мысль конструкторов-первопроходцев. Так, например, пытаясь максимально использовать энергию выхлопных газов, применяли дополнительную турбину. В то время как часть отработавших газов направлялась в турбину нагнетателя, вторая их часть вращала турбину, отдающую свою мощность непосредственно коленчатому валу двигателя. Такая комбинированная установка позволяла выдавать довольно большую мощность, но, вероятно, сложность самой конструкции не способствовала широкому ее распространению.Другая идея еще более экстравагантна, но, тем не менее, весьма показательна для того времени. Предлагались проекты силовых установок для гоночных автомобилей, в которых двухтактный двигатель вырабатывал газ для тяговой турбины. Кстати, газотурбинные двигатели некоторое время использовались в гонках, пока их не запретили из-за того, что дальнейшее широкое использование вертолетных силовых установок могло привести к полному вытеснению поршневых двигателей, что окончательно отделило бы автоспорт от автопромышленности.Турбонагнетатель с изменяемой геометрией турбины обеспечивает ему эффективную работу не только на высоких, но и на низких оборотах двигателяПлюсы и минусыСамое большое преимущество такого привода для нагнетания воздуха в том, что, в отличие от механических нагнетателей, приводимых от коленчатого вала, а стало быть, отнимающих мощность непосредственно у двигателя, турбонагнетатели используют фактически дармовую энергию, которая в обычном двигателе попросту выбрасывается из выхлопной трубы. Это делает турбонагнетатели более эффективными, нежели механические. Так, средние приблизительные оценки показывают, что турбонагнетатели отбирают у двигателя 1,5% мощности, в то время как центробежные механические нагнетатели – порядка 5% ( рутс-типа и того больше).Одновременно турбонаддув позволяет получить очень высокие литровые мощности – свыше 300 л. с. с одного литра объема. Двигатель с турбонагнетателем может иметь мощность на 40% выше, чем без него. Как ни странно, но турбированные двигатели более экономичны. Низкое КПД двигателя внутреннего сгорание обусловливается потерями на трение и низкой тепловой эффективностью (теряется много тепла ). С увеличением размеров мотора эти потери резко увеличиваются. Небольшие турбированные моторы в этой связи более предпочтительны.Ну и еще можно выделить такую положительную черту, как более устойчивая работа наддувных моторов в условиях высокогорья, где обычным атмосферникам подчас не хватает воздуха.Складывая все вышеперечисленные преимущества, логичен вывод, что использование турбонагнетателей на спортивных автомобилях позволяет добиться очень высоких результатов, тогда как классических методов форсировки уже недостаточно. Здесь уместно также упомянуть и о весовой составляющей. По определению маленький мотор весит меньше большого, что крайне важно для автоспорта (хотя, именно там их использование запрещено).Но в любой бочке меда есть и своя ложка дегтя. Турбонагнетатели несовершенны и обладают рядом проблемных мест. Самое заметное, о чем я уже сказал выше, – эффект «турбоямы», или «турболаг». Отсутствие механической связи между компрессором и двигателем приводит к несоответствию между требуемой мощностью, задаваемой водителем педалью акселератора, и производительностью компрессора. Происходит это по одной простой причине. При снятии ноги с педали газа частота вращения турбокомпрессора снижается. Если снова нажать на педаль, двигатель не сможет сразу развить необходимую мощность, пока турбокомпрессор снова не выйдет на свою скорость. Борются с этим по-разному. Часто можно встретить перепускные клапаны, позволяющие контролировать давление наддува и несколько снизить отрицательный эффект турбозадержки. Есть варианты, когда при отпускании акселератора особые клапаны-заслонки закрывают вход и выход компрессора, изолируя крыльчатки. Не имея значительного сопротивления, они какое-то время вращаются свободно по инерции с практически той же скоростью. Это позволяет при следующем нажатии на педаль газа снизить запаздывание турбины.Самым большим недостатком турбокомпрессоров до сих пор считается невысокая эффективность работы на малых оборотах двигателя. Но в последнее время и эта проблема находит свои решения. Турбины с переменной геометрией (см. выше), установка двух и более турбин, работающих параллельно (системы biturbo и т. п.), позволяют повысить отдачу системы. В этом году были анонсированы новые турбонагнетатели twin-turbo от компаний BMW и Opel. Здесь используется пара турбин различного размера и производительности. Одна, малая турбина обладает более быстрой реакцией и позволяет добавить мощности на малых оборотах (до 1800 об/мин.). На средних оборотах (до 3000 об/мин.) подключается вторая, большая турбина. И на высоких работает только большой, высокопроизводительный турбонагнетатель. С использованием такой системы нагнетания, например, автомобиль Opel Vectra, оснащенный дизелем 1,9 л, с системой наддува twin-turbo вырабатывает 212 л. с. мощности и 400 Нм крутящего момента (в диапазоне 1400–3600 об/мин.), позволяя машине развивать 250 км/ч и достигать с места скорости в 100 км/ч всего лишь за 6,5 секунды. Такие характеристики делают этот дизельный мотор серьезным конкурентом своим бензиновым собратьям.Турбокомпрессоры имеют те же недостатки, что и центробежные нагнетатели. Для эффективной работы они должны вращаться с очень высокой скоростью, даже большей, чем центрифуги. Плюс высокий нагрев (порядка 1000 °С), сложности в смазке, отводе тепла и т. д. Это накладывает особые требования к используемым материалам. Повышенные температуры сказываются не только на смазке деталей турбонагнетателя, но и на нагнетаемом воздухе: его охлаждение оказывается острым вопросом. Для эффективного охлаждения интеркулер рассчитывается и подбирается с особой тщательностью.Как и в любом нагнетательном устройстве, в турбонагнетателе необходим клапан, спускающий излишнее давление. С турбиной же еще сложнее. Здесь нужно не только следить за давлением наддува, но и перепускать выхлопные газы, чтобы снизить избыток давления в выпускном коллекторе, и исключить чрезмерно высокую скорость вращения ротора на высоких оборотах двигателя. Появившиеся в последнее время турбонагнетатели с электроуправляемыми перепускными клапанами (взамен существующих пневматических) позволяют вести более точную настройку мотора. Автопроизводители добиваются высоких показателей по экологии и топливной экономичности, а специалисты по доводке моторов имеют возможность либо чип-тюнингом, либо заменой турбонагнетателя на более производительный с его точной настройкой добиваться высоких результатов по мощности и крутящему моменту.Нужно сказать и еще об одном устройстве, которое призвано увеличить срок службы подшипникового узла турбонагнетателей – самого уязвимого элемента. Дело в том, что после работы на повышенных оборотах турбина должна «отдохнуть» на холостых оборотах. Поработав так несколько минут, турбина остывает, и ее можно остановить, не опасаясь перегрева подшипников. Устройство, именуемое турботаймером, позволяет при выключении зажигания глушить двигатель через некоторое время, которое можно либо запрограммировать, либо оно определяется устройством автоматически, исходя из температуры мотора. В отсутствие такого прибора водитель должен обеспечить «режим остывания» самостоятельно.COMPREXГоворя о турбонагнетателях, нельзя не сказать об одной очень интересной разработке, объединяющей и энергию выхлопных газов, и механический привод от коленвала. Идею использования принципа волнового ротора впервые в 1942 г. предложил Клод Сейппел из Brown Boveri Company (BBC), Швейцария. Легковой автомобиль Mazda 626 Capella был первой машиной, на которой устанавливался COMPREX (COMPRession-EXpansion – сжатие-расширение) в качестве компрессора для дизельного мотора. Ford Motor Company и Caterpillar прорабатывали проекты с использованием нагнетателя подобного типа. Именно на дизельных моторах это устройство работало особенно хорошо.

Принципиальная идея волнового обменника (именно так его иногда называют) такова. Сердцем конструкции является цилиндрический ячеистый ротор, имеющий множество сквозных, продольных каналов. С одного торца к нему подходит воздух, а с другого – выхлопные газы. Ротор вращается приводом от коленвала. С торцов его прикрывают заслонки, имеющие расположенные особым образом перепускные отверстия. Процесс сжатия выглядит следующим образом. Воздух с одного конца заполняет каналы ротора, ротор проворачивается; с другого конца в те же каналы подаются выхлопные газы. Сама работа ДВС придает выхлопным газам определенное давление. Это давление и сжимает свежий воздух. Далее, ротор снова проворачивается, и уже сжатый воздушный заряд проходит во впускной коллектор. Процесс происходит непрерывно. Ротор вращается с определенной скоростью, задаваемой оборотами двигателя и передаточным числом привода. Разумеется, необходим интеркулер, поскольку воздух от прямого контакта с выхлопными газами нагревается особенно сильно. Некоторый замес выхлопных газов в воздух для дизельного двигателя только в плюс, поскольку это обеспечивает необходимую рециркуляцию и снижает токсичность дизеля. Одним из основных преимуществ волнового нагнетателя было то, что, в отличие от механических нагнетателей, его обороты были куда ниже, а в отличие от турбонагнетателей – у волнового отсутствовал эффект «турбоямы» и рабочий диапазон не ограничивался лишь высокими оборотами. В 90-е годы прошлого века двигатели Mazda, оборудованные волновым нагнетателем, по показателю крутящего момента превосходили аналогичные турбодизели. Однако в 1997 г. производство машин с компрессором COMPREX было свернуто. Турбины стали более совершенными. Но работы по волновым нагнетателям рядом западных компаний ведутся и сейчас.

не судите строго!)))

Турбонагнетатель. Устройство и принцип работы

Что такое турбонагнетатель или турбокомпрессор? Фактически это компрессор, призванный нагнетать воздух, но его привод осуществляется не от коленчатого вала через ременную передачу, а используя энергию потока отработавших газов.

В данной статье рассмотрим устройство и принцип работы турбонагнетателей.

Принцип работы турбонагнетателя
Работа турбонагнетателя предельно проста. Выхлопные газы, проходя в турбину, приводят во вращение ротор. Колесо центробежного компрессора жестко закреплено на оси ротора и вращается с той же скоростью.

Чем большей энергией обладают выхлопные газы, тем быстрее вращаются колеса турбины и, соответственно, компрессоры. Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, тем выше мощность. При этом частота вращения турбокомпрессора может быть очень и очень высокой – 150 тыс. об/мин.

Большинство турбонагнетателей имеют механизм изменения геометрии турбины. Дополнительное кольцо с управляемыми направляющими лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. Так, на низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких же оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины.

Такое гибкое управление позволяет не только расширить диапазон эффективной работы турбонагнетателя, но и существенно снизить потребление топлива и вредные выбросы. Турбонагнетатель с изменяемой геометрией турбины обеспечивает эффективную работу не только на высоких, но и на низких оборотах двигателя.

Преимущество в том, что, в отличие от механических нагнетателей, приводимых от коленчатого вала и отнимающих мощность непосредственно у двигателя, турбонагнетатели используют фактически дармовую энергию, которая в обычном двигателе попросту выбрасывается из выхлопной трубы. Это делает турбонагнетатели более эффективными, нежели механические. Одновременно турбонаддув позволяет получить высокие мощности – свыше 300 л. с. с одного литра объема. Двигатель с турбонагнетателем имеет мощность на 40% выше, чем без него. Как ни странно, но турбированные двигатели более экономичны. Низкое КПД двигателя внутреннего сгорание обусловливается потерями на трение и низкой тепловой эффективностью. С увеличением размеров мотора эти потери резко увеличиваются. Небольшие турбированные моторы в этой связи более предпочтительны.

Турбонагнетатели несовершенны и обладают рядом проблемных мест. Самое заметное – эффект «турбоямы». Отсутствие механической связи между компрессором и двигателем приводит к несоответствию между требуемой мощностью, задаваемой водителем педалью 'газа' и производительностью компрессора.

Недостатком турбокомпрессоров считается невысокая эффективность работы на малых оборотах двигателя. Но и эта проблема находит свои решения. Турбины с переменной геометрией, установка двух и более турбин, работающих параллельно (системы bi-turbo), позволяют повысить отдачу системы.

Турбокомпрессоры имеют те же недостатки, что и центробежные нагнетатели. Для эффективной работы они должны вращаться с очень высокой скоростью. Плюс высокий нагрев (порядка 1000 °С), сложности в смазке, отводе тепла. Повышенные температуры сказываются не только на смазке деталей турбонагнетателя, но и на нагнетаемом воздухе: его охлаждение оказывается острым вопросом. Для эффективного охлаждения интеркулер рассчитывается и подбирается с особой тщательностью.

Как и в любом нагнетательном устройстве, в турбонагнетателе необходим клапан, спускающий излишнее давление. С турбиной еще сложнее. Здесь нужно не только следить за давлением наддува, но и перепускать выхлопные газы, чтобы снизить избыток давления в выпускном коллекторе, и исключить чрезмерно высокую скорость вращения ротора на высоких оборотах двигателя.

Нужно сказать, что после работы на повышенных оборотах турбина должна «отдохнуть» на холостых оборотах. Поработав так несколько минут, турбина остывает, и ее можно остановить. Устройство, именуемое турботаймером, позволяет при выключении зажигания глушить двигатель через время, которое можно запрограммировать, либо оно определяется автоматически, исходя из температуры мотора. В отсутствие такого прибора водитель должен обеспечить «режим остывания» самостоятельно.

Сравнивая нагнетатели с механическим приводом и турбоприводом, надо отметить один факт. Массовое производство позволяет автомобильной промышленности существенно снижать себестоимость моторов с турбонагнетателями. Использование же в тюнинге сопряжено с немалыми трудностями, прежде всего в установке.

Аналогичные центробежные механические нагнетатели более удобны и просты в установке и в эксплуатации. Однако достоинства турбонагнетателей приводят к тому, что их чаще используют при тюнинге двигателя. Существуют готовые комплекты для различных авто.

В заключение следует сказать: турбонагнетатели несомненно интересны, не зря большинство спортивных машин оснащаются турбинами. Высокий КПД и прочие положительные факторы делают их привлекательными как для обычных автомобилей, так и для тюнинга.

Турбонагнетатель

 Турбокомпрессоры и турбонагнетатели устанавливаются не только на автомобилях, но и самолетах, поездах, кораблях и других видах транспорта. Система была изобретена швейцарским инженером Альфредом Бюхи, который запатентовал свой турбонагнетатель для двигателя внутреннего сгорания в 1905 году. В 1962/63г. компания Шевроле (General Motors) впервые установила систему турбонаддува на серийный автомобиль, хотя можно предположить, что турбонагнетатели использовались еще в далеком 1952 году, но исключительно на гоночных автомобилях. Как пример, не стоит забывать об успехах Audi Quattro на мировых ралли в 1980-х. Вначале 1980-х с конвейера сошло много машин с турбонаддувом. Некоторые модели были очень достойными, несмотря на ранний этап развития данной области.Как работает система турбонаддуваКак и механические нагнетатели (cуперчарджеры), турбонаддув нагнетает воздух под давлением в двигатель с тем, чтобы увеличить количество кислорода, необходимого для горения. При этом мощность автомобиля увеличивается, но вместе с этим возрастает и расход топлива. Однако, в отличие от компрессоров, турбонаддув использует поток выхлопных газов, который заставляет вращаться турбину. Скорость вращения турбины может достигать 150 000 оборотов в минуту.

Турбины крепятся к выпускному коллектору. Внутри турбин имеются лопасти. Они вращаются под действием выходящего потока выхлопных газов. Турбина соединяется с компрессором посредством вала. Он передает вращение компрессору, который нагнетает воздух в цилиндры.В большинстве турбонаддувов предусмотрен гидростатический подшипник. Он нужен для постоянной смазки вала маслом, поступающим по специальным каналам от двигателя к подшипникам.Так масло подается на вал и смазывает его тонким слоем во время работы. Это обеспечивает свободное вращение вала и охлаждение всех частей турбонаддува.

Современные модели турбонаддувов считаются более надежными, поскольку при их разработке были учтены все недочеты и слабые места предыдущих конструкций.

Установка турбонаддуваЕсли не сделать настройку, скорее всего, количество поступающего воздуха не будет учтено в программе, а это повлечет плохую работу системы или того хуже. .

Также важно учитывать сопротивление двигателя. Поскольку воздух имеет свойство расширяться при нагревании, он создает дополнительное давление, которое в свою очередь увеличивает нагрузку на двигатель. Однако на многих современных двигателях вместе с установкой системы турбонаддува ставятся дополнительные устройства. Для этого лучше обратиться к специалистам, которые знают все нюансы работы по установке турбонаддувов.

Сжатый воздух имеет высокую температуру. Чтобы его охладить и увеличить плотность для лучшего горения смеси, необходим интеркулер (воздушный радиатор, который охлаждает воздух).Важно отметить, что, если сжатый воздух очень горячий, его подача слишком интенсивная, и при этом используется бензин с низким октановым числом, а зажигание выставлено на опережение, это может спровоцировать детонацию двигателя. Детонация – самопроизвольное возгорание рабочей смеси в цилиндре (бензин и воздух), в результате которой образуется ударная волна, способная вывести из строя двигатель.

Если компрессор начинает «травить», это может вызвать повреждение двигателя и турбин. Предохранительные клапаны разработаны с целью, не допустить движение воздуха в компрессоре в обратном направлении.

Автомобили с турбонаддувомМногие производители выпускают автомобили, оснащенные системой турбонаддува.

 

Все, что нужно знать о турбонаддувеБольшой наддув или маленький, что выбрать?Турбонаддувы, как известно, «страдают» задержкой (турболаг). Для того, чтобы турбина начала разгоняться нужно время. Сократить время разгона можно посредством уменьшения веса вращающихся частей. По причине легкой массы небольшие турбины меньше подвержены турболагу, чем более крупные. Но в то же время у больших турбин большее давление нагнетателя, соответственно больший наддув на высоких оборотах двигателя. Существует множество способов минимизировать время разгона турбины, поэтому турболаг не так уж и заметен на современных авто.

Для борьбы с турболагом можно использовать систему твин-турбо. Малая турбина ускоряет наддув, а большая обеспечивает быстрое повышение давления наддува.Перепускной клапан турбокомпрессора (вестгейт)Перепускной клапан позволяет устанавливать турбины меньшие по размеру, так как сокращает любые задержки (турболаги) и в то же время не дает слишком сильно вращаться турбине на высоких оборотах двигателя. Клапан обеспечивает нормальный выход выхлопных газов через лопасти турбины даже при высоком давлении и одновременно замедляет скорость их вращения. Во многих системах турбонаддува применяется внутренний перепускной клапан. Дизели (не все) обходятся без вестгейта, поскольку количество и давление выхлопных газов всегда под контролем, так как зависит от количества, поступающего в двигатель топлива. Небольшие колебания давления наддува никак не влияют на работу двигателя.

ПодшипникиИногда в турбонаддувах используются шариковые подшипники. Они уменьшают трение вала во время его вращения лучше, чем подшипники, смазываемые маслом. Они также облегчают вес вала. Это помогает турбокомпрессору быстрее разгоняться и сокращает турболаг.

Керамические лопасти турбиныЛопасти из керамики обладают меньшим весом, чем лопасти из стали, хотя последние наиболее часто устанавливаются в турбинах. Поскольку керамические лопасти облегчают вес турбины, они позволяют ей набирать скорость вращения быстрее и сокращают турболаг.

Интеркулер/охладитель нагнетаемого воздухаИнтеркулер – полезная вещь. По внешнему виду напоминает радиатор. Его предназначение – охлаждать горячий воздух, проходящий через него, холодным воздухом, поступающим снаружи от вентилятора. Охлажденный воздух имеет большую плотность, а, следовательно, в нем содержится больше кислорода, необходимого для горения. Это увеличивает мощность автомобиля (кислород + бензин = мощность).

Регулятор давления наддуваНаддув – это увеличение давления во входном коллекторе, который измеряется в PSI (фунт на квадратный дюйм). Важно остаться в диапазоне регулирования. Качество бензина, равно как и эффективное охлаждение нагнетаемого воздуха, влияет на то, какое будет давления наддува.

Регулятор давления может быть использован, чтобы обмануть датчик давления, который распознает меньший импульс и откроет перепускной клапан позже. Это происходит благодаря сокращению давления, поступающего в перепускной клапан, следовательно, наддув увеличивается. Есть регуляторы давления наддува, которые управляются бортовым компьютером.

Предохранительный клапан (клапан сброса давления) – антинагнетающий вентиль, перепускной клапан, клапан отвода.

Когда вы отпускаете педаль газа, воздух из системы турбонаддува выходит под давлением и можно услышать характерный звук. Перечисленные выше клапаны предназначены для сброса сжатого воздуха, который находится в турбинах. Как только вы отпускаете педаль газа, срабатывает клапан, но турбина при этом продолжает вращаться. Если этого не происходит, значит, произошла поломка системы турбонаддува или других деталей вследствие избыточного давления.

Тем не менее, предохранительный клапан (сброса давления) отличается от перепускного (клапана отвода). Предохранительный клапан сбрасывает воздух в атмосферу без учета того, что датчик массового потока воздуха будет все еще ждать, когда выпущенный воздух пойдет в двигатель. Это приводит к тому, что образуется и горит несгоревшее топливо, поскольку двигатель продолжает работать. А поскольку он продолжает работать, то блоком управления подается команда на впрыск топлива, которого итак в избытке. Это грозит поломкой двигателя. Перепускной (клапан отвода) перенаправляет воздух обратно в компрессор, поэтому количество воздуха в системе остается неизменным. У предохранительного клапана нет преимуществ по сравнению с перепускным и наоборот. Поэтому устанавливать можно и тот, и другой, разницы не будет, за исключением, конечно, характерного звука, издаваемого предохранительным клапаном.

ТурботаймерПомогает двигателю остыть. Даже при полной остановке автомобиля и без ключа в замке зажигания, это устройство обеспечивает работу двигателя на холостом ходу. В это время масло продолжает циркулировать и охлаждать турбину. Важно дать турбине остыть, поскольку масло, смазывая турбину, может нагреться до предела и отвердеть. Коксование масла крайне опасно – приводит к поломке двигателя.

Датчик давления турбиныПомогает постоянно следить за давлением наддува. Необходим, как при оптимальных настройках системы, так и при завышенных.

Синтетическое маслоТурбонаддувы требуют частой замены масла, причем оно должно быть синтетическим. Грязное или некачественное масло может повредить всю систему. Синтетическое масло обладает лучшими характеристиками, и предотвращает быстрый износ деталей.

Бензин с высоким октановым числомРекомендуется использовать бензин с более высоким октановым числом, чтобы избежать детонации двигателя. Супер неэтилированный бензин с октановым числом 97 RON считается лучше и стоит дороже, чем неэтилированный с числом в 95 RON.

Преимущества и недостатки турбонаддува

Преимущества:

  1. Повышает мощность двигателя
  2. Улучшает теплоотдачу двигателя
  3. Не занимает много места под капотом/обладает легким весом
  4. Дополнительный вес положительно влияет на мощность
  5. Преобразует часть тепловой энергии от выхлопных газов, которая могла быть потрачена впустую, но оказалась полезной (хотя это создает давление в выхлопной трубе).
  1. Увеличивает нагрузку на двигатель
  2. Увеличивает нагрузку на ходовую часть
  3. Многие системы «страдают» турболагом, а затем резким повышением давления нагнетателя
  4. Установка и комплектация обходится дорого
  5. Увеличивает давление в выхлопной трубе
  6. Повышается риск детонации двигателя и воспламенения горючей смеси вследствие чрезмерно сжатого горячего воздуха.

Электрический турбонагнетатель и электрический механический нагнетатель: в чем разница

   Читать оригинал публикации на 1gai.ru   

В чем разница между электрическими турбинами и электрическими нагнетателями?

Что такое турбонаддув знают те, кто любят впихивать одну деталь в другую, то есть мы с вами. Совсем недавно появились электрические варианты турбины и нагнетателя с механическим приводом (или суперчарджера). Что представляют из себя электрические варианты этих компрессоров и как они работают? 

Прежде чем мы перейдем к обсуждению, давайте освежим наши знания о работе турбин и суперчарджеров. По сути, оба эти устройства увеличивают плотность топливовоздушной смеси, которая поступает в двигатель внутреннего сгорания, где происходит компрессия и возгорание смеси.  Чем выше плотность топливовоздушной смеси, тем мощнее будет ход поршня и работа двигателя, даже без увеличения физического объема цилиндров двигателя.

Именно поэтому небольшие двигатели с турбонаддувом оказываются мощнее своих более крупных аналогов: двигатель получает больше мощности от каждого хода поршня. Как можно увеличить эту плотность? Посредством компрессии поступающего воздуха при помощи нагнетателя. Если нагнетатель работает от ременного привода двигателя, то это нагнетатель с механическим приводом. Если же от турбины, которая извлекает энергию из потока выхлопных газов, то это турбонагнетатель.

Недостаток турбонагнетателя заключается в том, что двигателю нужно некоторое время, чтобы произвести достаточное количество выхлопных газов. Эта досадная заминка называется турбояма. У суперчарджера нет такой задержки, но, чтобы раскрутить турбину, двигателю тоже нужно время, что сказывается на его эффективности. 

Можно предположить, что если к этим системам была добавлена «электрическая» функция, то этих недостатков больше не будет. И это будет правдой. 

На самом деле, я хочу рассказать о трех механизмах: электрический механический наддув, электрический турбонаддув и ту ерунду, которую продают в Интернете. Сразу избавляемся от того, что предлагают в Интернете. А что именно предлагают, например, на eBay можно посмотреть по ссылке.

Сразу скажу, что это не вариант сделать свой PT Cruiser еще мощнее. Это способ присоединить бесполезный откачивающий насос или вентилятор от компьютера к воздухозаборнику непонятно с какой целью. Вы все равно не увидите никаких изменений. Все эти штуки, которые соединяются с вашей 12-вольтовой электрической системой, чтобы запустить «компрессор» - полная дрянь.

В лучшем случае, эти чудеса техники соединятся с генератором, чтобы запустить бесполезный вентилятор, у которого все равно не хватит мощности для нормальной компрессии. Скорее всего, вы, наоборот, потеряете немного мощности из-за ограниченного потока нагнетаемого воздуха. Как говорится, не дайте себя обмануть. 

Итак, настоящие электрические механические нагнетатели все же существуют и по сути, это такие же нагнетатели, как и те, к которым мы привыкли. Они также раскручивают компрессор, чтобы увеличить плотность воздуха, но вместо ременного привода, они работают от электромотора.

Но электромотор — это не та 12-вольтовая пустышка с eBay. Здесь потребуется как минимум 48-вольтовая система. Компрессия воздуха потребляет очень много энергии, поэтому возникают трудности с разработкой электрических систем.

Большинство аккумуляторов и традиционных электрических систем в автомобилях просто не смогут обеспечить такой объем мощности достаточно быстро, чтобы запустить электрический суперчарджер. По этой причине, электрические суперчарджеры обычно идут вместе с суперконденсаторами большой емкости, которые могут хранить энергию и затем очень быстро выдавать электрическую энергию. Такие конденсаторы также можно перезаряжать, как электрические и гибридные автомобили по принципу рекуперативного торможения.

Например, Mazda уже использует суперконденсатор в своей системе i-eLoop в гибридных автомобилях. И хотя это не электрический суперчарджер, это все равно достаточно большой конденсатор, который уже производится и устанавливается в автомобили. Это дает нам надежду, что данная технология скоро станет повсеместной.

Электрические турбонаддувы сбивают с толку и заставляют нас думать, что они отличаются от электрических суперчарждеров. На самом деле, от электрического турбонаддува в них не так и много. Это просто электрические суперчарджеры небольшого размера, соединенные с обычным турбонагнетателем, работающим на потоке выхлопных газов.

Даже по определению, турбонагнетатель получает энергию от выхлопных газов, поэтому полюбившийся термин «электрический турбонагнетатель» просто не имеет никакого смысла.

По большому счету, главная задача электрического турбонагнетателя — избавиться от турбоямы и помочь обычному турбонагнетателю, пока скорость двигателя не достигнет точки, в которой турбина максимально эффективна.  Для этого, электрический турбонагнетатель (который может располагаться там же, где и обычный турбонагнетатель или отдельно, но работающий от того же импеллера) раскручивает компрессор на старте и на малых оборотах, а, когда объем выхлопных газов будет достаточным, он передает работу обычному турбонагнетателю. 

Не знаю, я бы сказал, что это просто электрический помощник, но не самостоятельная система. Такая гибридная система устраняет турбояму и, конечно, вам понравится мощность на всех скоростях двигателя. Требования к мощности автомобиля с электрическими системами менее жесткие, чем к автомобилям с электрическим суперчарджером. Так как турбина эффективно извлекает энергию из отработанных газов, то в целом эта задумка получается эффективней, чем электрический суперчарджер.

Подведем итог: электрический суперчарджер — это электрический механический нагнетатель, управляемый электрическим мотором (обычно) с неким источником хранения энергии. Электрический турбонагнетатель — это электрический суперчарджер, который работает вместе с обычным турбонагнетателем. Наконец, электрический суперчарджер на eBay за 50 баксов — это полная ерунда, которую вы приделаете к своему двигателю просто так для красоты.

Ну как, все понятно? Отлично!


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости