В состав рулевого механизма входит рулевое колесо, вал, заключенный в рулевую колонку, и рулевой редуктор, связанный с рулевым приводом. Рулевой механизм позволяет уменьшить усилие, прикладываемое водителем к рулевому колесу для преодоления сопротивления, возникающего при повороте управляемых колес машины вследствие трения между шинами и дорогой, а также деформации грунта при движении по грунтовым дорогам.
Рулевой редуктор представляет собой механическую передачу (например, зубчатую), установленную в корпусе (картере) и имеющую передаточное число 15 — 30. Рулевой механизм уменьшает усилие, прикладываемое водителем к рулевому колесу, связанному посредством вала с редуктором, во столько раз. Чем больше передаточное отношение рулевого редуктора, тем легче водителю поворачивать управляемые колеса. Однако с увеличением передаточного числа рулевого редуктора для поворота на некоторый угол управляемого колеса, связанного через детали привода с выходным валом редуктора, водителю необходимо повернуть рулевое колесо на больший угол, чем при малом передаточном числе. При движении ТС с высокой скоростью труднее совершать резкий поворот под большим углом, поскольку водитель не успевает поворачивать рулевое колесо.
Передаточное отношение рулевого редуктора:
Up = (ap/ac) = (pc/pp) где ар и ас — углы поворота соответственно рулевого колеса и выходного вала редуктора; Рр, Рс — усилие, приложенное водителем к рулевому колесу, и усилие на выходном звене рулевого механизма (сошке).
Так, для поворота сошки на 25° при передаточном отношении рулевого редуктора, равном 30, рулевое колесо необходимо повернуть на 750°, а при Up = 15 — на 375°. При усилии на рулевом колесе 200 Н и передаточном отношении Up = 30 водитель на выходном звене редуктора создает усилие 6 кН, а при Up = 15 — в 2 раза меньше. Целесообразно иметь переменное передаточное отношение рулевого механизма.
При малых углах поворота рулевого колеса (не более 120°) предпочтительно большое передаточное отношение, обеспечивающее легкое и точное управление автомобилем при движении с высокой скоростью. При низких скоростях малое передаточное отношение позволяет при небольших углах поворота рулевого колеса получать значительные углы поворота управляемых колес, что обеспечивает высокую маневренность автомобиля.
Выбирая передаточное отношение рулевого механизма, исходят из того, что управляемые колеса должны поворачиваться из нейтрального положения на максимальный угол (35…45°) не более чем за 2,5 оборота рулевого колеса.
Рулевые механизмы могут быть нескольких типов. Наиболее распространенными из них являются «червяк—трехгребневый ролик», «червяк—шестерня» и «винт—шариковая гайка-рейка—шестерня». Шестерня в рулевом механизме выполнена в виде сектора.
Рулевой механизм преобразует вращательное движение рулевого колеса в угловое перемещение рулевой сошки, установленной на выходном валу рулевого редуктора. Рулевой механизм при движении полностью груженого автомобиля, как правило, должен обеспечивать усилие на ободе рулевого колеса не более 150 Н.
Угол свободного поворота рулевого колеса (люфт) для грузовых автомобилей обычно не должен превышать 25° (что соответствует длине душ 120 мм, измеренной по ободу рулевого колеса) при движении грузового автомобиля по прямой. Для автомобилей других типов люфт рулевого колеса иной. Люфт возникает из-за износа в эксплуатации деталей рулевого управления и разрегулировки рулевого механизма и привода. Для уменьшения потерь на трение и защиты деталей рулевого редуктора от коррозии в его картер, укрепленный на раме машины, заливают специальное трансмиссионное масло.
При эксплуатации ТС необходимо регулировать рулевой механизм. Регулировочные устройства рулевых редукторов предназначены для устранения, во-первых, осевого люфта рулевого вала или ведущего элемента редуктора, а во-вторых — люфта между ведущим и ведомым элементами.
Рассмотрим конструкцию рулевого механизма типа «глобоидальный червяк— трехгребневый ролик».
Рис. Рулевой механизм типа «глобоидальный червяк—трехгребневый ролик»: 1 — картер рулевого редуктора; 2 — головка вала рулевой сошки; 3 — трехгребневый ролик; 4 — регулировочные прокладки; 5 — червяк; 6 — рулевой вал; 7 — ось; 8 — подшипник вала сошки; 9 — стопорная шайба; 10 — колпачковая гайка; 11 — регулировочный винт; 12 — вал сошки; 13 — сальник; 14 — рулевая сошка; 15 — гайка; 16 — бронзовая втулка; h — регулируемая глубина зацепления ролика с червяком
Глобоидальный червяк 5 установлен в картере 1 рулевого редуктора на двух конических роликовых подшипниках, хорошо воспринимающих осевые усилия, возникающие при взаимодействии червяка с трехгребневым роликом 3. Червяк, напрессованный на шлицы, имеющиеся на конце рулевого вала 6, обеспечивает при ограниченной длине хорошее зацепление гребней ролика с нарезкой червяка. Благодаря тому что действие нагрузки рассредоточено по нескольким гребням в результате их контакта с червяком, а также замене трения скольжения в зацеплении значительно меньшим трением качения достигается высокая износостойкость механизма и достаточно большой КПД.
Ось ролика закреплена в головке 2 вала 12 рулевой сошки 14, а сам ролик установлен на игольчатых подшипниках, уменьшающих потери при прокрутке ролика относительно оси 7. Опорами вала рулевой сошки являются, с одной стороны, роликовый подшипник, а с другой — бронзовая втулка 76. Сошка соединена с валом при помощи мелких шлицов и закреплена шайбой и гайкой 15. Для уплотнения вала сошки применяется сальник 13.
Зацепление червяка с гребнями осуществляется таким образом, что при положении, соответствующем прямолинейному движению машины, свободный ход рулевого колеса практически отсутствует, а по мере увеличения угла поворота рулевого колеса он возрастает.
Регулировка затяжки подшипников рулевого вала осуществляется с помощью изменения числа прокладок устанавливаемых под крышку картера, своей плоскостью упирающуюся в торец крайнего конического роликового подшипника. Регулировку зацепления червяка с роликом осуществляют смещением вала рулевой сошки в осевом направлении с помощью регулировочного винта 11. Этот винт установлен в боковой крышке картера, снаружи закрыт колпачковой гайкой 10 и зафиксирован стопорной шайбой 9.
На автомобилях большой грузоподъемности применяются рулевые механизмы типа «червяк—боковой сектор (шестерня)» или «винт—шариковая гайка—рейка—шестерня», имеющие большую площадь контакта элементов и как следствие малые давления между поверхностями рабочих пар редуктора.
Рулевой механизм типа «червяк—боковой сектор», наиболее простой по конструкции, используется на некоторых автомобилях. В зацепление с червяком 2 входит боковой сектор 3 в виде части шестерни со спиральными зубьями. Боковой сектор выполнен как единое целое с валом 1 сошки. Сошка расположена на валу, установленном на игольчатых подшипниках.
Зазор в зацеплении между червяком и сектором непостоянен. Наименьший зазор соответствует среднему положению рулевого колеса. Зазор в зацеплении регулируется изменением толщины шайбы, расположенной между боковой поверхностью сектора и крышкой картера рулевого редуктора.
Конструкция рулевого механизма типа «винт—шариковая гайка—рейка—сектор» показана на рисунке. Вал рулевого колеса посредством карданной передачи соединен с винтом 4, взаимодействующим с шариковой гайкой 5, неподвижно закрепленной стопорным винтом 15 в поршне-рейке 3. Резьба винта и гайки выполнена в виде полукруглых канавок, заполняемых шариками 7, циркулирующими по резьбе при вращении винта. Крайние нитки гайки соединены желобом 6 с наружной трубкой, обеспечивающей циркуляцию шариков. Трение качения этих шариков по резьбе во время вращения винта незначительно, что обусловливает высокий КПД такого механизма.
Рис. Рулевой механизм типа «червяк—боковой сектор»: 1 — вал сошки; 2 — червяк; 3 — боковой сектор
Рис. Рулевой механизм типа «винт—шариковая гайка—рейка—сектор»: 1 — крышка цилиндра; 2 — картер; 3 — поршень-рейка; 4 — винт; 5 — шариковая гайка; 6 — желоб; 7 — шарики; 8 — промежуточная крышка; 9 — золотник; 10 — корпус клапана управления; 11 — гайка; 12 — верхняя крышка; 13 — пружина плунжера; 14 — плунжер; 15 — стопорный винт; 16 — зубчатый сектор (шестерня); 17 — вал; 18— сошка; 19 — боковая крышка; 20 — стопорное кольцо; 21 — регулировочный винт; 22 — шаровой палец
При повороте автомобиля водитель с помощью рулевого колеса и вала вращает винт, относительно оси которого на циркулирующих шариках перемещается шариковая гайка. Вместе с гайкой перемещается и поршень-рейка, поворачивая зубчатый сектор (шестерню) 16, выполненный как единое целое с валом 17. Сошка 18 установлена на валу с помощью шлицов, а сам вал размещен на бронзовых втулках в картере 2 рулевого редуктора.
Рулевой механизм - это основа рулевого управления и выполняет следующие функции: увеличение усилия, приложенного к рулевому колесу; передача усилия рулевому приводу; самостоятельный возврат рулевого колеса в нейтральное положение после снятии нагрузки.По своему устройству рулевой механизм является механической передачей (редуктором), поэтому основным его параметром является передаточное число. В зависимости от вида механической передачи различают три типа рулевых механизмов: реечный, червячный, винтовой.
Реечный рулевой механизм
Реечный рулевой механизм - является самым распространенным типом механизма, устанавливаемым на легковые автомобили. Основными элементами рулевого механизма являются шестерня и рулевая рейка. Шестерня устанавливается на валу рулевого колеса и находится в постоянном зацеплении с рулевой (зубчатой) рейкой.Схема реечного рулевого механизма
1 – подшипник скольжения; 2 – манжеты высокого давления; 3 – корпус золотников; 4 – насос; 5 – компенсационный бачок; 6 – рулевая тяга; 7 – рулевой вал; 8 – рейка; 9 – компрессионный уплотнитель; 10 – защитный чехол.Работа реечного рулевого механизма происходит следующим образом. При вращении рулевого колеса рейка перемещается влево или вправо. Во время движения рейки перемещаются присоединенные к ней тяги рулевого привода и совершают поворот управляемых колес.Реечный рулевой механизм отличается простотой конструкции и как следствие, высоким КПД, а также имеет высокую жесткость. Но такой тип рулевого механизма чувствителен к ударным нагрузкам от неровностей дороги, склонен к вибрациям. По причине своих конструктивных особенностей реечный рулевой механизм применяется на переднеприводных автомобилях с независимой подвеской управляемых колес.
Червячный рулевой механизм
Конструкция червячного рулевого механизма состоит из глобоидного червяка (червяка с переменным диаметром), соединенного с рулевым валом, и ролика. На валу ролика на внешней части корпуса рулевого механизма установлен рычаг (сошка), соединенный с тягами рулевого привода.Схема червячного рулевого механизма
1 – пластина регулировочного винта вала сошки; 2 – регулировочный винт вала сошки; 3 – гайка регулировочного винта; 4 – пробка маслозаливного отверстия; 5 – крышка картера рулевого механизма; 6 – червяк; 7 – картер рулевого механизма; 8 – сошка; 9 – гайка крепления сошки к валу; 10 – шайба пружинная; 11 – сальник вала сошки; 12 – втулка вала сошки; 13 – вал сошки; 14 – ролик вала сошки; 15 – вал червяка; 16 – верхний шарикоподшипник; 17 – нижний шарикоподшипник; 18 – регулировочные прокладки; 19 – нижняя крышка подшипника червяка; 20 – ось ролика; 21 – шариковый подшипник ролика; 22 – сальник вала червяка.
Вращение рулевого колеса обеспечивает обкатывание ролика по червяку, вызывая качание сошки и перемещение тяг рулевого привода, что приводит к повороту управляемых колес.Червячный рулевой механизм имеет меньшую чувствительность к ударным нагрузкам, обеспечивает большие углы поворота управляемых колес и как следствие лучшую маневренность автомобиля. При этом червячный механизм сложен в изготовлении и имеет высокую стоимость изготовления. Рулевое управление с таким типом механизма имеет большое количество соединений, поэтому требует затратного ремонта.Червячный рулевой механизм используется на легковых автомобилях повышенной проходимости с зависимой подвеской управляемых колес, грузовых автомобилях малой тоннажности и автобусах. Ранее такой тип рулевого механизма устанавливался на отечественных заднеприводных автомобилях.
Винтовой рулевой механизм
Винтовой рулевой механизм включает в себя следующие конструктивные элементы: винт на валу рулевого колеса; гайку, перемещаемую по винту; нарезанную на гайке зубчатую рейку; зубчатый сектор, соединенный с рейкой; рулевую сошку, расположенную на валу сектора.Схема винтового рулевого механизма
1 – картер рулевого управления; 2 – вал-сектор; 3 – гайка-рейка; 4 – шарики; 5 – стопорное кольцо; 6,9 – защитные крышки; 7 – карданный шарнир; 8 – втулка; 10 – манжета; 11 – подшипники винта; 12 – регулировочные прокладки; 13 – винт; 14 – сошка; 15 – крышка нижняя картера; 16 – уплотнительное кольцо.Отличительной чертой устройства винтового рулевого механизма является соединение винта и гайки с помощью шариков, чем достигается меньшее трение и износ рабочей пары.Принцип работы винтового рулевого механизма похож на работу червячного механизма. Поворот рулевого колеса приводит к вращению винта, который в свою очередь перемещает надетую на него гайку. При этом происходит вращение шариков. Гайка посредством зубчатой рейки перемещает зубчатый сектор, а вместе с ним и рулевую сошку.
Винтовой рулевой механизм по сравнению с червячным механизмом имеет более высокий КПД и реализует большие усилия. Такой тип рулевого механизма нашел применение на некоторых легковых автомобилях представительского класса, тяжелых грузовых автомобилях и автобусах.
Многие согласятся с тем, что двигатель является основой автомобиля. И это действительно так. Однако представить автомобиль без рулевого управления тоже трудно. Это важный и необходимый в каждой машине элемент. Задача рулевого управления состоит в обеспечении движения транспортного средства в заданном направлении. Данный узел состоит из нескольких компонентов. Это рулевое колесо, колонка, привод и рулевой механизм. О последнем мы сегодня и поговорим.
Механизм рулевого управления имеет несколько основных задач:
Данный элемент может быть нескольких типов. Сегодня встречаются следующие типы рулевых механизмов:
Что собой представляет каждый из них? Все эти типы механизмов мы рассмотрим по отдельности.
На данный момент он является одним из самых распространенных. В основном, устанавливается на легковые автомобили и кроссоверы. Устройство рулевого механизма реечного типа предполагает наличие следующих деталей:
Первая устанавливался на валу руля. Шестерня находится в постоянном зацеплении с зубчатой рейкой. Действует данный механизм довольно просто. При вращении руля рейка перемещается вправо или влево. При этом тяги, что присоединены к приводу, поворачивают управляемые колеса на заданный угол.
Среди преимуществ такого механизма стоит отметить простоту конструкции, большой КПД и высокую жесткость. Однако при этом такой механизм сильно чувствителен к неровностям на дороге, из-за чего быстро изнашивается. Нередко владельцы подержанных автомобилей сталкивались с проблемой стучащей рейки. Это и есть следствие износа рулевого механизма. Поэтому элемент устанавливается лишь на определенные типы автомобилей. В основном это переднеприводные машины с независимой передней подвеской. Если говорить про ВАЗ, то рейка встречается на всех моделях, начиная с «восьмерки». На «классике» же устанавливается несколько иной рулевой механизм.
Именно такой тип используется на отечественных «Жигулях», а также на некоторых автобусах и малотоннажных грузовиках. Состоит данный узел из:
Вне рулевого механизма расположена сошка. Это специальный рычаг, который связан с тягами привода. По такой же схеме устроен рулевой механизм на ГАЗ-3302.
Среди преимуществ такого узла стоит отметить меньшую чувствительность к ударным нагрузкам. Поэтому данный рулевой механизм, на ВАЗ-2107 устанавливаемый, является практически вечным. Владельцы редко сталкиваются со стуком и вибрациями на руле. Однако такая схема конструкции имеет больше соединений. Поэтому периодически механизм нуждается в регулировке.
Это более сложный в устройстве узел. В его конструкцию входит:
Ключевая особенность данного механизма заключается в способе соединения гайки и винта. Крепление осуществляется при помощи шариков. Таким образом, достигается меньший износ и трение пары.
Принцип работы винтового элемента схож с червячным. Поворот руля осуществляется посредством вращения винта, что перемещает гайку. Последняя передвигает при помощи рейки зубчатый сектор, а вместе с ней и рулевую сошку.
Где используется винтовой механизм? Зачастую, он применяется на тяжелой коммерческой технике – грузовиках и автобусах. Если говорить о легковых автомобилях, то это лишь модели представительского класса. Механизм более сложный в устройстве и дорогой, поэтому значительно увеличивает стоимость самого автомобиля.
Сейчас практически на всех автомобилях применяется усилитель рулевого управления. Он служит для уменьшения усилий, что необходимы для поворота передних колес. Данный элемент позволяет обеспечить высокую точность и быстродействие рулевого управления. На данный момент различают несколько типов усилителей:
Первый тип является более популярным. Устанавливается как на легковые автомобили, так и на грузовики. В устройстве усилителя имеется насос, который создает определенное давление в гидравлической системе. В зависимости от стороны поворота руля, эта жидкость давит на первый либо второй контур рейки. Таким образом, снижается усилие, что требуется приложить для поворота. Среди преимуществ гидравлической системы стоит отметить высокую надежность. Усилитель редко выходит из строя. Однако, поскольку механизм насоса приводится в действие от коленвала, забирается часть мощности от ДВС. Хотя на современных двигателях это вовсе незаметно.
Электрический усилитель состоит из отдельного двигателя. Крутящий момент от него передается на сам вал рулевого колеса. Конструкция применяется только на легковых автомобилях, так как не рассчитана на большие усилия.
ЭУР оборудован отдельной электроникой, которая и управляет данным двигателем. Иногда усилитель доукомплектовывается адаптивными системами, которые направлены на увеличение безопасности при движении по полосе.
Среди инновационных решений стоит отметить систему динамического управления от «Ауди». Здесь передаточное число изменяется в зависимости от текущей скорости автомобиля. Таким образом, на высоких скоростях руль жесткий и сбитый, а при парковке он становится легким. Передаточное число изменяется при помощи сдвоенного планетарного редуктора, который добавлен в вал. Корпус его может проворачиваться в зависимости от скорости автомобиля.
Итак, мы выяснили, что собой представляет данный механизм. Это очень ответственный узел в рулевом управлении. Вне зависимости от типа, его нужно периодически проверять. Ведь потеря управления на скорости – это самое опасное, что может произойти с водителем.
Рулевое устройство предназначено для изменения поворота судна и удержания его на курсе путем поворота руля на определенный угол или удержания его в диаметральной плоскости судна.
В состав рулевого устройства входят четыре основных узла:
Все суда морского флота оборудуются основной механической и запасной ручной или механической рулевой машиной. По требованию Регистра мощность основной рулевой машины и привода должна быть достаточной для перекладки руля с, борта на борт (2X35°) за время не более 30 сек на полном переднем ходу судна. Ручной привод должен перекладывать руль за время не более 100 сек при этих же условиях. Мощность запасного механического привода должна быть достаточной для перекладки руля с 20° одного до 20° другого борта за время не более 60 сек при скорости переднего хода, равной половине полной, но не менее 6 узлов. Переход с основного привода на запасной не должен занимать более двух минут.
Рулевое устройство должно быть экономичным, надежным и безопасным в работе независимо от навигационных условий, в которые может попасть судно. На судне должно быть предусмотрено не менее двух разных постов управления рулевых устройств.
По конструктивному исполнению рули подразделяются на простые, полубалансирные, балансирные, обтекаемые и т. д., а по принципу действия — на пассивные и активные.
Пассивным называется руль, который воспринимает и передает только силу давления воды на перо. Активный руль, помимо этой силы, передает еще и силу упора собственного движителя, размещаемого в грушевидной насадке пера руля. Привод движителя монтируется совместно с ним или выносится в судовое помещение.
Активный руль повышает маневренность судна, позволяя перекладывать руль до 70—90° на борт, и может давать приращение скорости судна на 1,5 узла, имея мощность привода движителя от 8 до 11% от мощности главных двигателей.
Схема активного руля приведена на рис. 67. Гребной винт руля соединен с валом электродвигателя эластично. Питание к электродвигателю подводится по кабелю, проходящему через гельмпортовую трубу вдоль баллера. Двигатель охлаждается водой и внутренние поверхности его покрыты антикоррозионным лаком, являющимся одновременно и электроизоляцией. Управляется активный руль непосредственно с мостика.
По конструктивному исполнению и принципу действия рулевые приводы подразделяются на:
Первый тип привода применяется при значительном удалении рулевой машины от руля и в настоящее время встречается лишь на малых судах.
Винтовые механические приводы применяются исключительно редко, да и то в качестве запасных.
Ледокольный привод представляет собой мощный румпель с расположенной на нем паровой рулевой машиной.
Этот привод применялся на паровых ледоколах старой постройки.
Некоторое распространение имеет секторный зубчатый привод на судах.
Одна из конструкций привода показана на рис. 68. Сектор насажен на баллер свобод¬но и находится в зацеплении с зубчатой шестерней, приводимой во вращение от вала рулевой машины. Посредством амортизационных пружин сектор соединяется с румпелем, плотно насаженным на баллер на шпонке.
Амортизационные пружины предназначены для передачи движения на румпель и для гашения динамических нагрузок руля, могущих привести к поломкам зубьев сектора и шестерни.
Современные недавно построенные и вновь строящиеся суда оборудуются в подавляющем большинстве гидравлическими рулевыми приводами, которые подразделяются на плунжерные (скальчатые), винтовые, плунжерные секторно-кольцевые и лопастные.
Плунжерные (скальчатые) приводы изготовляются двух- и четырех-скальчатыми. Двух- скальчатый рулевой гидропривод приведен на рис. 69. Цилиндровые скалки соединены между собой скользящей муфтой или подшипником румпеля.
Румпель скользит в подшипнике и одновременно, испытывая давление со стороны скалок, поворачивается. Направление движения скалок зависит от направления подачи рабочего масла в цилиндры привода. Цилиндры соединяются между собой трубопроводами с перепускными клапанами, которые срабатывают при резком возрастании нагрузки в одном из цилиндров.
Винтовой гидравлический привод приведен на рис. 70, а. Корпус и цилиндр привода жестко закреплены на фундаменте. К корпусу крепится верхняя крышка, изготовленная заодно с резьбовой втулкой, внутри которой проходит свободно баллер.
На баллере в нижней части сидит неподвижно на шпонке стакан с внешними шлицами. Шлицами соединяется со стаканом кольцевой поршень, имеющий также резьбовое зацепление с верхней крышкой привода. Соответствующие места уплотнены внутри привода кольцами из маслостойкой резины.
При подаче рабочего масла в верхнюю полость 8 поршень будет опускаться вниз и одновременно поворачиваться в резьбе крышки. Вращение передается баллеру и руль поворачивается. Из нижней полости масло отводится к насосу. Для обратного поворота руля рабочее масло подается в нижнюю полость и отводится из верхней полости привода. Поршень будет двигаться вверх, а руль — поворачиваться в противоположном направлении.
На квадратную головку баллера может надеваться румпель запасного привода. Конструкция винтового гидравлического привода компактна, но сложна, и сам привод имеет сравнительно низкий механический к.п.д.
Плунжерный секторно-кольцевой гидравлический рулевой привод показан на рис. 70, б. Этот привод получил некоторое распространение на современных морских судах иностранного флота.
Кольцевой цилиндр привода разделен перемычкой на две рабочие полости, в которых помещены пустотелые плунжеры, перемещающиеся по кольцевым рабочим полостям цилиндра. Разделительная перемычка имеет два отверстия, через которые производится подвод и отвод рабочего масла из полостей цилиндра. Рабочее масло давит на торец плунжера и заставляет его перемещаться. Торец плунжера оборудован уплотнением из маслостойкой резины для предотвращения протечек масла из полости цилиндра наружу.
Румпель насажен на баллере на штоке и входит своим приводным концом в специальную втулочную перемычку плунжеров. Секторно-кольцевой привод прост по устройству, но имеет серьезный эксплуатационный недостаток — трудность обеспечения внутреннего уплотнения.
Очень большое распространение в настоящее время получил лопастной гидравлический рулевой привод. Основными узлами его являются цилиндр с крышкой и ротор. Ротор представляет собой ступицу с закрепленными на ней или изготовленными совместно рабочими лопастями и насаживается на конический конец баллера или промежуточный вал на шпонке. Встречаются цельнолитые конструкции ротора, присоединяемого к баллеру фланцевым соединением. Изготовляются лопастные рулевые приводы и в нашей стране и за рубежом.
В некоторых литературных источниках и в производственной практике понятие о рулевой машине, часто отождествляют с понятием всего рулевого устройства или рулевого привода. Это неправильно, так как рулевая машина — лишь составная часть рулевого устройства.
На судах морского флота применяются паровые, электрические, гидравлические и ручные рулевые машины. Ручная машина и ручной привод играют только вспомогательную роль. Мощность рулевых машин составляет от 0,60 до 0,65% от мощности главного двигателя в 3000 л. с. и 0,18—0,19% при мощности главного двигателя 60 000 л. с.
Замена парусного флота паровым привела к быстрому росту скорости и водоизмещения судов. Условия ручного штурвального управления рулем затруднились и возникла необходимость применения механических рулевых машин. Основной энергией на паровых судах была энергия пара и поэтому прежде всего стали применяться паровые рулевые машины.
Рулевое устройство судна оборудуется одной паровой маши¬ной. Машина двухцилиндровая в вертикальном или горизонтальном исполнении. Через цилиндрическую зубчатую или червячную передачу рулевая машина передает мощность зубчатому сектору или грузовому барабану при штуртросном рулевом приводе.
Рулевая машина должна сразу же пускаться из любого положения, и реверс должен осуществляться без задержки. Поэтому машина работает без расширения пара и мотыли расположены под углом 90° друг к другу. Паровые золотники машины не имеют перекрышей, каждый цилиндр снабжен своим золотником и устанавливается третий пусковой золотник. Схема парораспределения рулевой паровой машины приведена на рис. 71. На двух частях рисунка пусковой золотник показан в своих крайних положениях. Движение пара и поршней машины показано стрелками. При среднем положении пускового золотника доступ пара к цилиндрам прекращается и машина останавливается. Скорость вращения вала рулевой машины и перекладки руля при работе рулевого устройства зависит от величины открытия паровых окон пусковым золотником, т. е. от количества подаваемого в цилиндры пара.
Цилиндровые золотники приводятся в движение от вала рулевой машины, а пусковой золотник — с мостика. Пусковой золотник связан с валом рулевой машины сервомотором, т. е. устройством для согласования действий штурвала и рулевой машины, которое служит для возврата пускового золотника в среднее положение после прекращения воздействий с мостика или другого поста управления.
Паровые рулевые машины оборудуются клапанами экономии, устанавливаемыми между пусковым золотником и стопорным паровым клапаном. Назначение клапана экономии — прекратить доступ пара к пусковому золотнику несколько раньше, чем он придет в среднее положение. В среднее положение золотник возвращается сервомотором, но не сразу, а в течение некоторого времени. Доступ пара в цилиндры машины постепенно прекращается и вращение ее замедляется. Наконец, наступает такой момент, когда паровая машина не может преодолеть силы сопротивления в рулевом устройстве из-за малого количества поступающего в нее пара и останавливается раньше, чем пусковой золотник станет в среднее положение. Паровые окна не будут закрыты полностью и через них свежий пар будет постоянно перетекать в магистраль отработавшего пара. Для предотвращения этих бесполезных утечек свежего пара устанавливается клапан экономии. Клапан может приводиться в действие автоматически от давления пара или механически от общего привода с пусковым золотником.
Электрическая рулевая машина представляет собой обычный электродвигатель постоянного или переменного тока, на валу которого закрепляется червяк, работающий в паре с червячным колесом. На одном валу с червячным колесом укрепляется прямозубая шестерня, входящая в зацепление с зубчатым сектором рулевого привода.
Во многих случаях рулевое устройство оборудуется двумя электродвигателями: рабочим и резервным. Установка их выполняется с учетом возможности осевого перемещения и вывода из зацепления с червячным колесом при переходе с одного электродвигателя на другой или на запасной привод. Для предотвращения чрезмерного поворота зубчатого сектора устанавливаются конечные выключатели, прерывающие питание электродвигателя током.
Электрогидравлическая рулевая машина представляет собой электроприводной насос, перемещающий рабочее масло в системе гидропривода. Применяются ротационные насосы (поршневые, винтовые, пластинчатые) и шестеренные с переменной и постоянной производительностью. Устанавливаются также две рулевые машины—рабочая и резервная.
Ротационный радиально-поршневой насос рулевой машины приведен на рис. 72.
Насос состоит из корпуса, регулировочного кольца и ротора. Основу ротора составляет звезда цилиндров, вращающаяся вместе с поршнями. Поршни имеют башмаки, а в некоторых конструкциях ролики, которые скользят по внутренней поверхности регулировочного кольца. Регулировочное кольцо выполняет роль пускового золотника, связано своими цапфами с телемотором и сервомотором и имеет возможность поперечного перемещения. Центральная полость звезды цилиндров разделена на две части неподвижной горизонтальной перегородкой. Каждая часть полости сообщается через отверстия с трубопроводами рулевого привода.
Средний рисунок насоса показывает нахождение регулировочного кольца в нейтральном или среднем положении. При вращении ротора поршни не имеют возвратно-поступательного движения и насос не производит перемещение рабочего масла. Этот момент соответствует удержанию руля в заданном положении.
Крайние рисунки показывают расположение регулировочного кольца в своих крайних положениях, что соответствует максимальной производительности насоса и максимальной скорости перекладки руля. При вращении ротора в направлении, указанном стрелкой, отвод регулировочного кольца вправо обеспечивает всасывание масла в центральную полость насоса через верхнее отверстие, а нагнетание — через нижнее. С отводом кольца влево всасывание будет производиться через нижнее отверстие, а нагнетание — через верхнее. Таким образом изменяется направление движения масла в трубопроводах и направление поворота привода и перекладки руля.
Ротор насоса вращается с постоянным числом оборотов. Напор насоса постоянный, а производительность переменная и зависит от степени отвода регулировочного кольца от среднего положения. Такой насос называется насосом с регулируемой производительностью.
Отечественное рулевое устройство РЭГ-ОВИМУ-7 с лопастным рулевым приводом, разработанное под руководством В. В. Завиша, приведено на рис. 73.
Рулевой привод двухлопастной и состоит из цилиндра и ротора. Ротор цельнолитой и имеет фланец, при помощи которого присоединяется к баллеру. Рулевая машина электрогидравлическая, насос ротационный пластинчатый марки Г-12-14 (ЛЗФ-70) постоянной производительности 73 л/мин при 1000 об/мин и мощности 5,6 квт. Рабочая жидкость — турбинное масло 22. Допускается применение и другого, более вязкого, масла. Давление масла в системе 35 кГ/см2.
На рисунке руль стоит в заданном положении, насос разгружен и работает вхолостую, перемещая масло в направлении, указанном сплошными стрелками через отверстия г, е и б.
Для перекладки руля на правый борт каретка приемника телемотора отводится вправо воздействием на нее давления жидкости, перемещаемой в системе телемотора вращением рулевого штурвала. Золотники распределительного устройства переместятся вправо и отверстия д и в откроются, а отверстие е закроется. Масло будет перемещаться в системе в направлении, указанном пунктирными стрелками, и поступать в цилиндр привода через отверстия г и в. Ротор привода и руль будут поворачиваться против часовой стрелки.
Чтобы удержать руль в нужном положении, рулевой перестает вращать штурвальное колесо и сервомотор возвращает золотники распределительного устройства в среднее положение. Насос начинает работать опять вхолостую.
Для перекладки руля на левый борт рулевой вращает штурвальное колесо в обратном направлении. Каретка телемотора отводится влево и в этом же направлении переместится распределительный золотник (нижний), а разгрузочный золотник опять передвинется вправо. Масло теперь будет идти к приводу через отверстия г и д, а от привода — через в и б. Ротор привода и руль будут поворачиваться по часовой стрелке.
Распределительный и разгрузочный золотники связаны с ротором привода системой рычагов, представляющих собой сервомотор. Ротор всегда оказывает на золотники действие, обратное действию телемотора. Поэтому с прекращением вращения штурвального колеса действие телемотора прекращается и ротор рулевого привода своим движением приведет золотники в среднее положение через систему сервомотора.
Чтобы показания аксиометра совпадали с действительным положением руля, предусмотрен возврат разгрузочного золотника в среднее положение лишь после того, как распределительный золотник станет в среднее положение. Для этого к разгрузочному золотнику придан фиксатор в верхней части. При отводе золотника из среднего положения поршень фиксатора опускается вниз под действием давления пружины и застопоривает разгрузочный золотник. Когда распределительный золотник станет в среднее положение и закроет окна див, перераспределением гидравлического давления на поршень фиксатора последний поднимется вверх и даст возможность пружине разгрузочного золотника вернуть его в среднее положение.
В системе рулевого устройства предусмотрены предохранительный клапан для перепуска масла в случае заклинивания разгрузочного золотника в правом положении и перепускные клапаны для сброса масла из одной полости привода в другую при сильных ударах волн о перо руля.
Сервомотор — обязательный элемент каждой рулевой машины. Принцип действия всех сервомоторов одинаков, а конструктивное исполнение разное и зависит от типа рулевой машины и рулевого привода.
Одна из конструкций сервомотора паровой рулевой машины приведена на рис. 74.
Рабочий вал лежит в подшипниках и имеет опорные диски, препятствующие осевому перемещению вала. Рулевой штурвал выполнен совместно со ступицей, имеющей резьбовую нарезку. Ступица навинчена на вал и имеет кольцевой паз, куда входят выступы углового вильчатого рычага. Рычаг связан со штоком пускового золотника.
Для перекладки руля рулевой вращает штурвал, который навинчивается или вывинчивается с вала и перемещается по оси. Перемещение ступицы штурвала приводит к повороту углового рычага, который выводит пусковой золотник из среднего положения, и рулевая машина начинает работать. Через шестеренную передачу вращение вала рулевой машины передается рабочему валу, который оказывает на ступицу штурвального колеса действие, обратное действию рулевого, и будет стремиться вернуть штурвальное колесо и пусковой золотник в среднее положение.
Если скорость вращения штурвального колеса будет равна скорости вращения рабочего вала, пусковой золотник будет находиться в заданном положении и рулевая машина будет работать с постоянной скоростью. Для увеличения скорости вращения рулевой машины и перекладки руля рулевой должен вращать штурвальное колесо с возрастающей скоростью.
После перекладки руля на за¬данный угол рулевой отпускает штурвальное колесо. Рулевая машина еще будет работать некоторый малый промежуток времени, рабочий вал вернет штурвальное колесо и пусковой золотник в среднее положение, и машина остановится.
У гидравлических рулевых машин роль сервомотора выполняют рычажные передачи.
Почти на всех морских судах рулевая машина удалена от поста управления ею и, поэтому применяются специальные телединамические передачи или телемоторы для связи поста управления с пусковым устройством рулевой машины.
Существуют валиковый, стержневой, тросовый, электрический и гидравлический телемоторы. Последние два имеют преимущественное применение.
Гидравлический телемотор приведен на рис. 75. Основу телемотора составляют датчик (рулевая тумба) и приемник. Датчик устанавливается на мостике, а приемник — в румпельном отделении и соединяются между собой трубопроводами. Предварительное заполнение системы телемотора маслом производится при помощи ручного насоса. Воздух при заполнении системы отводится через воздушную пробку крышки цилиндра датчика, а заполнение контролируется по переливу масла в бачок через сливной трубопровод.
Внутри датчика находится зубчатая рейка с закрепленным на ней поршнем. Рейка приводится в движение от рулевого штурвала через зубчатую цилиндрическую передачу. К цилиндру датчика прикреплен резервуар, связанный с рабочей полостью датчика при посредстве двух клапанов. Один клапан служит для перепуска масла из цилиндра датчика в резервуар в случае чрезмерного повышения давления в системе, другой — для перепуска масла из резервуара в цилиндр датчика при значительном понижении давления в системе.
Приемник состоит из двух неподвижных пустотелых скалок и подвижного цилиндра, разделенного перегородкой на две части. К цапфам цилиндра присоединены две тяги, связанные со штоком пускового золотника рулевой машины.
При вращении штурвала против часовой стрелки зубчатая рейка и поршень датчика будут двигаться вверх. Масло будет выдавливаться из верхней полости цилиндра датчика и поступать в нижнюю полость цилиндра приемника. Цилиндр будет двигаться вверх, сжимая пружину и выталкивая масло из верхней полости в нижнюю полость цилиндра датчика. Тяги выведут золотник из среднего положения, и рулевая машина начнет работать.
Если рулевой перестанет вращать штурвал и отпустит его, пружина начнет расширяться и заставит цилиндр приемника опускаться вниз. Ход масла в системе будет обратный, и цилиндр приемника и зубчатая рейка с поршнем датчика будут возвращены в среднее положение. Сервомотор остановит рулевую машину.
Вращением штурвала по часовой стрелке обеспечится перекладка руля на другой борт.
Для управления рулевой машиной широко применяются авторулевые, заменяющие рулевого и повышающие экономичность рулевого устройства за счет более точного управления рулевой машиной и уменьшения расхода энергии. Вдобавок, судно идет более устойчиво, меньше рыскает, что снижает расход топлива главным двигателем и сокращает время перехода судна.
При обслуживании рулевых устройств необходимо руководствоваться общими указаниями по обслуживанию палубных механизмов, а также указаниями ССХ и заводов-изготовителей.
Рулевое устройство должно быть в полной готовности к моменту выхода судна в рейс. Приготовление рулевой машины к действию производится по указанию вахтенного помощника капитана.
В процессе приготовления к действию паровой рулевой ма¬шины производится ее внешний осмотр, прогревается паропровод и машина, проверяется действие пускового золотника, серво¬мотора и клапана экономии. Все необходимые части смазы¬ваются. Телемотор заполняется рабочей жидкостью, если необхо¬димо, и проверяется плотность гидравлической системы по удер¬жанию давления масла.
У секторного или механического винтового привода обращается особое внимание на состояние шестерен, червяков и червячных колес. При сломанных или треснутых зубьях работа рулевого привода запрещается.
В электрогидравлической рулевой машине проверяется уровень масла в расширительном бачке, действие и переход с одного насоса на другой и с основного привода на запасной и обратно, плотность соединений и отсутствие пропусков рабочего масла из системы.
Действие рулевого устройства проверяется пробными пусками с контролированием согласованности действия всех узлов. Замеченные ненормальности в работе устраняются.
Вахтенный моторист или машинист обязан не менее двух раз за вахту проверять работу рулевой машины и смазывать трущиеся части на ходу судна. При этом также проверяется нагрев трущихся деталей на ощупь или по показаниям термометров и наличие шумов и стуков в рабочих частях рулевого устройства.
В гидравлических системах проверяется уровень масла в бачках, не допускается снижение уровня ниже метки на указательной шкале или колонке. При длительной работе рулевого устройства необходимо работать поочередно рулевыми машинами, если их две.
О всех замеченных ненормальностях в работе рулевого устройства необходимо немедленно докладывать вахтенному механику. В случае нагрева трущихся частей машины выше нормы выделяется самостоятельный вахтенный для наблюдения за рулевым устройством.
При кратковременной остановке рулевой машины закрывается стопорный клапан свежего пара и открываются краны продувания паровых цилиндров. При остановке машины на длительное время все паровые клапаны, за исключением кранов продувания, закрываются. Руль должен быть установленным в среднее положение.
Вывод электрической и электрогидравлической рулевой машины из действия производится отключением питания электродвигателя. Гидравлическая система должна быть проверена на плотность и на отсутствие течи рабочей жидкости из системы.
1 1 1 1 1 1 1 1 1 1 Rating 0.00 (0 Votes)
"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453