С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Водород на авто


Прошлое «будущего»: водород в автомобилях — DRIVE2

Прошлое «будущего»: водород в автомобилях

На прошлой неделе внимание мировой общественности привлекло объявление автопроизводителя Toyota о старте продаж нового автомобиля Toyota Mirai с водородным двигателем. Mirai в переводе с языка автопроизводителя означает «будущее», и некоторые СМИ поспешно окрестили Mirai «революцией» на автомобильном рынке. Покопавшись в истории, я поняла, что сенсацию Mirai может произвести лишь только потому, что японцы вопреки всем но все же решились массово производить и продавать автомобиль, работающий на водороде. В остальном — история топлива h3 длится уже не первый век, и автомобили с водородными двигателями — далеко не новость.

Начну, пожалуй, с того, что сама идея использовать водород для приведения в движение автомобиль родилась уже в 19-м веке, а точнее в 1807 году, когда швейцарец Франсуа Исаак де Риваз придумал двигатель внутреннего сгорания, работающий на h3. Полвека спустя француз Этьен Ленуар изобрел «гипомобиль» с одноцилиндровым двухтактным двигателем, топливом для которого был полученный с помощью электролиза водород. Позже, правда, Ленуар адаптировал двигатель под различные виды газов, в том числе угольный, и порядка 400 его автомобилей разошлись по своим покупателям.

Что-то более-менее похожее на «нормальный» автомобиль с двигателем на водородных топливных элементах было представлено в 1933 году энергопредприятием Norsk Hydro. Один из своих грузовиков компания перевела на газообразный водород, подача которого в двигатель внутреннего сгорания осуществлялась через встроенный трансформатор аммиака. Стоит упомянуть и еще об одном грузовике с водородным двигателем, который стал доказательством того, что война все-таки двигатель прогресса. Топливо в блокадном Ленинграде было дефицитным, и тогда военный техник Борис Шелищ предложил использовать воздушно-водородную смесь приземлившихся аэростатов и подавать ее «во всасывающие трубы автомобильных двигателей». После ряда экспериментов и доработок за 10 дней на водородное топливо было переведено 200 грузовиков ГАЗ-АА, Шелища наградили орденом Красной Звезды, а на изобретение был выдан авторский патент… который мог бы обеспечить лидерство России в разработке транспортных средств на водородном топливе, если бы про него не забыли.

Важной вехой в истории автомобилей на водородном топливе стал 1966 год, когда была представлена модель «Электровэн» 1966 от General Motors. Этот автомобиль считается первым непосредственно выпущенным с двигателем на водородных топливных элементах. Машина крайна интересная: спереди это просто автомобиль для водителя и одного пассажира, а сзади — целая научная лаборатория: один большой бак для водорода, один для кислорода и в общей сложности около 170 метров труб.

В 1966 году «Электровэн» выпустили, протестировали, показали журналистам, но на том проект застопорили по причинам, которые, собственно, и сегодня препятствуют развитию автомобилей на водороде — высокая стоимость материалов (платины) и отсутствие инфраструктуры.

В 1970-80-х годах исследования и разработки в области создания тепловых двигателей на водороде успешно продолжались по всему миру. В это время свои первые достижения представила и Япония. Это были автомобили Musashi, разработанные одноименным японским технологическим институтом. Musashi, начиная с 1974 года, последовательно выпускали легковые автомобили, приводимые в движение сжиженным водородом, а в 1986 году показали еще и грузовичок.

Исследования по применению водорода в двигателях авто продолжались и в СССР. В 1979 году лабораторно-дорожные испытания прошел РАФ-22031 с комбинированной (бензоводородной) силовой установкой. Но видимо по причинам политического хаоса разработкам не суждено было выйти из разряда экспериментальных.

В 1980-90-х годах в «тему водородного топлива» включились уже многие игроки международного автомобильного рынка, в том числе и Daimler — Mercedes Benz, Mazda, Renault, Toyota, BMW, ну а в 2000-х эта тенденция стала повальной.

Toyota «будущее» Mirai появится на рынке Японии уже 15 декабря этого года. По завявлениям производителя, автомобиль способен преодолевать 650 км. на полном баке, заправить который можно будет за несколько минут. Стоимость автомобиля в Японии составит 57 тысяч USD. Говорящее название Mirai, вполне вероятно, покажет, есть ли будущее у водорода как альтернативного топлива для автомобилей.

carexauto.ru

Авто на водороде. HHO-генератор водорода на авто

Автомобилестроение является одним из самых перспективных направлений промышленности. Мировые концерны стремятся вкладывать немалые деньги в развитие новых технологий, которые в будущем должны улучшить эксплуатационные качества транспортных средств. Малейшее изменение в принципах работы автомобиля способно кардинально изменить его динамику, ходовые качества, а также уровень безопасности. При этом наиболее значительные перемены обещают альтернативные источники топлива и, в частности, авто на водороде, которые уже сегодня можно наблюдать в линейках передовых производителей. Несмотря на появление серийных моделей такого типа, конструкторы все еще находятся в поисках наилучшего применения водорода. Но тот факт, что внедрение данного топлива в алгоритм действия двигателя приносит целый ряд преимуществ, бесспорен.

Специфика водородных автомобилей

Далеко не всегда переход от традиционных технологий к новым решениям позволяет достичь улучшения качественных показателей эксплуатации транспорта. Так происходит с электромобилями, которые хоть и считаются экологически чистым и сравнительно экономным видом технического средства, но имеют много недостатков, среди которых неудовлетворительная динамика. В свою очередь, авто на водороде при условии сбалансированного устройства топливных элементов может сохранить и достоинства машин с классическими двигателями, и обеспечить несколько новых преимуществ. Интерес к данному виду топлива со стороны производителей обусловлен возможностью повышения экологичности транспорта, а также экономией энергоносителя. По сравнению с обычными двигателями внутреннего сгорания агрегаты на водороде практически не выбрасывают вредные вещества. Такого результата можно добиться лишь при условии полного избавления от традиционных моторов, а в этом случае будут заметны и сокращения в мощности.

Комбинация водорода и ДВС

На сегодняшний день автопроизводители используют несколько концепций применения водорода. Одной из самых распространенных является гибридный вариант, при котором происходит совмещение двигателя внутреннего сгорания и водородных элементов. Изначально концептуальные авто на водороде, выполненные с таким подходом, отличались невысокой мощностью. Однако последние разработки демонстрируют обратную ситуацию, когда силовой потенциал увеличивается на 10-15%. Но, опять же, повышение мощности нивелирует преимущество в виде экологической чистоты и стоимости содержания машины. Есть и другой негативный фактор от использования водорода в системе ДВС. В процессе эксплуатации топливо вступает в реакцию с элементами конструкции, что существенно сокращает рабочий ресурс материалов силового агрегата.

Технические характеристики машин на водороде

Первым серийником, который снабжался водородной силовой установкой, является четырехдверный седан Mirai от концерна Toyota. Разработчики использовали нестандартную конфигурацию, в которой основу начинки представляет электромотор, подключенный к преобразователю водорода. В итоге гибридная машина обеспечивает 151 л. с., максимальную скорость в 180 км/ч и разгон до «сотни» за 9 сек. При этом одна заправка позволяет преодолевать почти 500 км, что очень неплохо для первого авто на водороде. Технические характеристики водородных кроссоверов также впечатляют – например, Hyundai Intrado получил аккумулятор на 36 кВт*ч, обеспечивающий ход до 600 км. Но самое важное, что вредные выбросы в данном случае сведены к нулю. Компании уже сегодня предлагают водородные машины с привлекательными рабочими данными. Среди останавливающих этот прогресс факторов можно отметить лишь отсутствие инфраструктуры, позволяющей использовать новые технологии широкой массе потребителей.

Генераторы водорода

Пока крупные производители осваивают высокотехнологичные двигатели, задействующие водород в качестве источника энергообеспечения, в среднем звене наблюдается распространение вспомогательных генераторов, позволяющих перерабатывать топливные элементы данного типа. Поскольку основной целью использования новых видов топлива является повышение экологичности процесса и снижение стоимости питания, то в некоторых случаях для этого достаточно внедрить в конструкцию только соответствующий реактор. Такую функцию, в частности, выполняет HHO-генератор водорода на авто, который также называют газовым преобразователем. При этом существует две разновидности таких установок – с жидкими и сухими компонентами. С точки зрения эффективности, выгоднее второй вариант, так как жидкие элементы требуют больших объемов тока, повышая размеры батареи.

Принцип работы водородных реакторов

Устройство генератора включает в себя фильтры, шланги, элементы питания, клапаны и систему контроля. Данная инфраструктура предназначена для того, чтобы в процессе работы двигателя обеспечивалось смешивание основного топлива и водородной смеси. Дело в том, что обычный ДВС даже в самых лучших исполнениях не способен гарантировать полное сгорание бензина. Специальный реактор водорода для авто оптимизирует процесс работы клапанов, повышая интенсивность компрессии и, соответственно, объемы сгорания. В момент сжатия смеси поршнем водородная смесь увеличивает октановое число, тем самым способствуя эффективному сжиганию горючего. Существуют разные технологические подходы к реализации этого процесса, но все они, в той или иной степени, сокращают объем вредных выбросов в атмосферу и экономят расход основного топлива.

Авто на водороде своими руками

Монтаж выполняется в подкапотном пространстве с последующим подключением энергоснабжения от бортовой сети. Газ подается через систему воздушного забора, при этом не требуя создания специальной врезки для топливного канала. Важно отметить, что топливом для таких генераторов выступает раствор на основе питьевой соды и дистиллированной воды. В зависимости от комплектации пакета установка водорода на авто может осложниться за счет включения электродов, обеспечивающих более эффективное расщепление смесей. Однако подобные устройства пока встречаются только на экспериментальных концептах. Для рядового пользователя гораздо важнее обеспечивать снабжение машины качественным раствором с поправкой на сезонность. Например, чтобы агрегат не замерз в зимнее время, рекомендуется добавлять в состав изопропиловый спирт.

Положительные отзывы о водородных машинах

С точки зрения экологических организаций и самих производителей, преимущества использования водорода очевидны. Что касается конечного потребителя, то для него выгода от применения новых топливных элементов пока не так выражена. Тем не менее наиболее удачные образцы автомобилей такого типа демонстрируют экономию при эксплуатации, что в будущем может стать одним из главных факторов популярности данной техники. В плане динамических качеств и мощности генератор водорода для авто вызывает противоречивые суждения, но и тут есть положительные сдвиги. Рациональный расход топлива дает не только экономию, но и повышение производительности силовой установки – соответственно, в некоторых случаях повышается и мощность.

Негативные отзывы

Даже если дело касается передовых разработок в этой области, пользователям приходится сталкиваться с проблемами неразвитой инфраструктуры. Как и в случае с другими версиями гибридов, водородные машины требуют обслуживания на специальных станциях. Конечно, есть и модели, которые работают на растворах, поставляемых в баллонах. Но в данном случае отмечаются жесткие условия хранения, соблюдения которых требует водород на авто. Отзывы с критикой отдельно отмечают модернизированные машины, работавшие на традиционных двигателях. Дело в том, что интеграция водородных установок зачастую приводит к быстрому износу ближайших узлов и деталей.

Сравнение с альтернативными технологиями

Как отмечают специалисты, рано или поздно в мировом автопроме будут преобладать технологии, соответствующие высоким нормам экологической безопасности. Наряду с водородными концептами, на эту роль претендуют электромобили, различные гибриды, модели, работающие на жидком азоте и т. д. Но, в отличие от перечисленных концепций, тот же HHO-генератор водорода на авто является наиболее простым в технической реализации. Если для электродвигателя разработчикам приходится зачастую создавать новую конструкцию в пространстве с двигателем, то внедрение водородного реактора под силу любой современной автомастерской. Другое дело, что генератор нельзя рассматривать как самый лучший пример использования альтернативного топлива для транспорта.

Заключение

Водород в качестве источника для снабжения силовой установки транспорта использовали еще на заре появления первых автомобилей. Однако высокая производительность классических двигателей внутреннего сгорания затмила разработки такого рода. Собственно, и в наши дни по целому ряду параметров авто на водороде не способны конкурировать с привычными моделями. Актуальность же данного направления вызвана отсутствием загрязняющих атмосферу веществ. Есть и определенные преимущества в других нюансах эксплуатации, но они не являются принципиальными для производителей. Если же говорить о жертвах, на которые придется идти создателям водородных автомобилей, то они, скорее всего, ограничатся скромной мощностью и внесением конструкционных элементов, которые могут повлиять на эргономику.

Автомобили на водороде — «двойка» за экологию

Разве может такое быть у «зеленой» технологии? Оказывается, может. Будущее водородных автомобилей, в отличие от других «зеленых» разработок, в настоящее время выглядит весьма печально. Хотя еще совсем недавно это направление казалось самым перспективным и многообещающим. Еще бы — заправляем машину водородом, а из выхлопной трубы идет только водяной пар! Нулевой выброс, предел мечтаний! Автомобиль Honda FCX, использующий в качестве топлива водород, в 2009 году даже завоевал звание World Green Car of the Year («Зеленый автомобиль года»).

Но не будем пока о грустном, а рассмотрим варианты технического исполнения водородомобилей. Их существует ровно два: в первом случае водород заправляется в автомобиль с обычным ДВС, который может работать и на бензине, и на водороде. Во втором случае на электромобиль в качестве источника питания устанавливаются топливные элементы, в которых при соединении водорода и кислорода вырабатывается электричество (именно так устроен упоминавшийся выше Honda FCX).

Обычный бензиновый двигатель после небольших переделок можно приспособить для работы на воздушно-водородной смеси. Дизель для этого не годится, так как смесь не воспламеняется от сжатия. Теоретически при сжигании смеси должна выделяться только вода, однако на практике это не так. Вода выделяется если с водородом смешивать чистый кислород. Если же с водородом смешивать воздух, который в основном состоит из азота, то, соответственно, в выхлопе будут присутствовать его оксиды. Для борьбы с этим явлением смесь приходится обеднять, но при этом мощность двигателя падает почти вдвое! В общем 100 % экологической чистоты достичь не удается.

Второй способ применения водорода гораздо чище. Топливные элементы выделяют только тепло и воду, вырабатывая при этом электричество. То есть их можно сравнить с батарейкой, которая работает с подпиткой на водороде. Напряжение одного элемента невелико, поэтому приходится их компоновать в батарею. Но ее вес, габариты, а, самое главное, стоимость получаются весьма внушительными. Именно цена и препятствует широкому распространению топливных элементов.

Проблемы эксплуатации автомобилей на водороде

Общая проблема обеих типов — хранение водорода в автомобиле. Смесь водорода с воздухом взрывоопасна. Что произойдет с водородомобилем в случае ДТП? Чтобы обеспечить приемлемый запас хода водород необходимо держать в сжиженном состоянии. Бак для сжиженного газа — это дорогостоящее и имеющее большой вес устройство. В случае широкого распространения водородомобилей потребуется сеть заправочных станций, а для этого потребуются время и деньги.

Проблемы получения водорода

Однако все перечисленные проблемы ничто по сравнению с главной проблемой: откуда взять столько водорода? На данном этапе развития существует два основных способа его получения: из метана и из воды.

Но получение из метана и выглядит, мягко говоря, нелогично, да и в экологическом плане не безупречно. Судите сами: берем один вид топлива и перерабатываем его в другой, затрачивая при этом энергию. В ходе получения водорода из метана выделяется углекислый газ, от которого мы как раз хотели избавиться, создавая водородомобиль. Ну, и природный газ — это невозобновляемый ресурс, который рано или поздно закончится.

Более привлекательной выглядит идея получения водорода из воды. Воды на планете хватает, но чтобы добыть из нее водород, необходимо огромное количество энергии. В итоге получается, что затраты энергии на добычу водорода превышают то ее количество, которое он может отдать при использовании в автомобиле.

Неутешительные итоги

Водородная технология прочно войдет в нашу жизнь только в том случае, если произойдёт научный прорыв в области производства водорода, в результате чего его можно будет получать из воды без использования углеводородного топлива или электроэнергии.

Водородный автомобиль

Создано 29.09.2010 09:56 Автор: IndigoMan

Начало «водородной эры» исторически относится к 1806 году, когда Франсуа Исааком де Риваз был открыт двигатель внутреннего сгорания, работающий на водороде, который изобретатель производил электролизом воды. Эта технология со временем стала использоваться в аэростатах, а с появлением водородных топливных элементов - и в других видах транспорта.

Причин интереса к водородному транспорту можно назвать много. Взять хотя бы статистику выброса парниковых газов в результате использования бензина и низкосортного дешёвого горючего: на сегодняшний день эта цифра практически достигает 25%, и по мере того, как в развивающихся странах увеличивается число личных автомобилей, эти показатели прогрессируют. Кроме углекислого газа в атмосферу выбрасываются оксиды азота, серы и т. д. Да и с финансовой точки зрения, прогнозируемый дефицит топлива, рост цен на энергоносители и стремление различных стран достичь независимости в сфере энергетики подталкивает серьёзных производителей к введению инноваций в машиностроительной отрасли.

Обычный двигатель внутреннего сгорания для работы на водороде не подходит - водород легко воспламеняется от высокой температуры выпускного коллектора, - поэтому для работы на водороде используется роторный двигатель, так как в нём выпускной коллектор значительно удалён от впускного. Характерным в использовании этого вида топлива является снижение мощности двигателя до 82 %-65 % в сравнении с бензином. Конечно, можно внести некоторые изменения в систему зажигания, - и тогда мощность двигателя увеличивается до 117 % в сравнении с бензиновым аналогом, но из-за более высокой температуры в камере сгорания значительно увеличится выход окислов азота. Кроме того, водород при тех температурах и давлениях, которые создаются в двигателе, может вступать в реакцию с материалами двигателя и смазкой, приводя к более быстрому износу. Промежуточным решением стали смеси традиционных топлив с водородом. Например, HCNG - смесь с природным газом. На борту транспортного средства размещаются установка, производящая из дистиллированной воды водород, который затем добавляется к дизельному топливу. Такой ход позволяет сократить расход топлива, увеличить мощность двигателя и сократить выхлоп. Чаще всего такие установки внедряются на крупные грузовики и горную технику.

Ошибочно полагать, что для создания автомобиля с нулевым выхлопом достаточно перевести роторный мотор на водородное топливо. Здесь есть одна тонкость: водород горит в воздухе, а не в чистом кислороде, - поэтому в атмосферу все же выбрасываются окислы азота. Хорошая новость в том, что всемирно объявленный экологическим врагом номер один, - углекислый газ -  в выхлопе отсутствует полностью. 

Для городского транспорта применяется, в основном, топливо по принципу разделения, - тоесть, в запасе есть и водород, и бензин, которые не смешиваются, предпочитая мощности экологичность. Пока такие транспортные биотопливные средства выпускаются ограниченными партиями: это городские автобусы MAN Lion City Bus и Ford E-450, а так же легковые автомобили нового типа BMW Hydrogen 7 и Mazda RX-8 hydrogen, об особенностях которых далее пойдёт речь. 

BMW Hydrogen 7 ( 12-цилиндровый двигатель объёмом 6 литров )

Двигатель внутреннего сгорания может работать на бензине или водороде по очереди. На авто установлен бензобак 74 литра, и баллон для хранения 8 кг водорода. Таким образом, проехав 200-300 км на водороде, может дальше использовать бензин хотя бы для того, чтобы добраться до ближайшей водородной заправки. К слову, для пробега на бензине у BMW Hydrogen 7 останется ещё 480 км.

Основные параметры:

·         При работе на водороде мощность двигателя составляет 170 кВт. (228 л.с.), вращающий момент 337 Нм. При работе на бензине двигатель развивает мощность 194 кВт. (260 лс.).

·         Максимальная скорость 229 км/ч.

·         Разгон до 100 км/ч за 9,5 сек.

Переключение с одного вида топлива на другое происходит автоматически, однако предпочтение всё же отдаётся водороду.

BMW Group разрабатывает водородные технологии уже более 20 лет. В ходе испытатаний для системы хранения водорода водородный бак разрушали под высоким давлением, нагревали на открытом огне до температуры 1000° Цельсия в течение 70 минут, деформировали твёрдыми и тяжёлыми предметами, - однако, несмотря на весь пессимизм критиков, водород, находящийся в баке, не взрывался. Поэтому производитель запустил программу «Clean Energy» для распространения в разных странах новых водородных BMW-7. Автомобили были проданы лишь для аренды, причём большая их часть успешно перекочевала в Европу ещё в 2007 году. В качестве средства популяризации компания запустила в Штатах пиар-программу «BMW Hydrogen 7 Pioneer Program», по задуму которой этими авто пользовались такие звёзды мировой величины, как Бредд Питт, Анджелина Джоли, Ричард Гир, Шарон Стоун, Пласидо Доминго и другие известные шоу-мены. А весной 2008 года BMW представила монотопливную версию «BMW Hydrogen 7», работающую только на водороде.

Mazda Premacy Hydrogen RE Hybrid

Фирменный маздовский роторный двигатель, как оказалось, прекрасно работает и на водородном топливе. После ряда опытов на основе Mazda5, так же известного как минивэн Premacy, был создан пятиместный гибрид, - намного более практичный, чем купе RX-8: двухсекционный роторный двигатель развивает 109 лошадиных сил как на бензине, так и на водороде, и работает в паре со 110-киловаттным электромотором, который может питаться и от ротора, и от батареи. Генератор так же выполняет функцию стартера, и может передавать энергию от двигателя сразу к электромотору, минуя батарею, что дает водителю ощущение прямой связи акселератора с двигателем. Если бак с водородом опустеет, Mazda Premacy продолжит движение на бензине.

 

С мая 2009 года несколько электроводородных  Mazda Premacy переданы в коммерческий лизинг, что служит еще одним тестом в реальных условиях для экспериментальных машин.

 

Существует так же другой способ использования водорода в транспортной сфере, - топливные элементы. Суть таких конструкций в получении электрического тока в ходе химической реакции синтеза воды из водорода и кислорода с выделением тепла. Первое транспортное средство на топливных элементах, используя щёлочь в качестве основы, создала в 1957 году компания Allis-Chalmers Manufacturing Company. Испробовав новинку на  тракторе и машине для гольфа, производители решились оснастить ею технику посерьёзней.

У топливных элементов есть масса плюсов. Во-первых, это отсутствие жёсткого ограничения на КПД, как у тепловых машин. Высокий КПД ( 60-80% в сравнении с 35-38% дизельных генераторов ) достигается благодаря прямому превращению энергии топлива в электроэнергию. Во-вторых, топливные элементы легче и менее габаритные. К тому же, производят меньше шума, меньше нагреваются, и более эффективны с точки зрения потребления топлива.

В настоящий момент производят и испытывают такие автомобили на водородных топливных элементах как Focus FCV, Honda FCX, Tucson ( Hyundai ), FCEV X-TRAIL FCV (Nissan ), Toyota Highlander FCHV, Volkswagen space up, Mercedes-Benz A-Class и другие.

Чтобы помочь внедрению водородного топлива на транспорте, Норвегия, Япония и многие другие страны не только строят «водородные трассы», оснащённые заправками, но и искусственно удерживают цену на водород ниже себестоимости. Кроме того, разрабатываются стандарты транспортировки и применения водорода. И не беда, что для безопасности хранения баллонов нужно пожертвовать местом в багажнике, ведь совершенствование топливных элементов продолжается - компактнее, легче, дешевле. Да и морозы до -30 С такому авто больше нипочём! 

Источники: www.avtomir.com, http://www.ecochauffeur.co.uk

  • автомобили
  • водород
  • двс
  • роторный двигатель

Комментарии:

Download SocComments v1.3


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости