С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Из чего состоит свеча зажигания


Устройство свечи зажигания: элементы свечи и какова их роль?

Настало время, уважаемые читатели, поговорить об элементе, который венчает всю систему зажигания автомобиля и без сомнения является одним из ключевых в работе бензинового двигателя внутреннего сгорания. Свеча зажигания – именно ради искры, которая возникает между её электродами, и затеваются все ухищрения с электроникой, катушками, трамблёрами и прочим. Давайте поближе познакомимся с этим узлом, рассмотрим устройство свечи зажигания и нюансы, которые нужно знать о ней начинающим водителям.

Недооцениваете роль свечей, а зря…

Итак, как мы уже с вами знаем, героиня этой статьи нужна для того, чтобы воспламенить топливно-воздушную смесь в цилиндре мотора.

К сожалению, очень часто владельцы машин не уделяют должного внимания этим элементам, считая их простым расходным материалом. На самом же деле свечи, как и многие другие узлы двигателя, требуют к себе определённой доли внимания, ведь от них зависит стабильность работы силового агрегата.

Помимо этого, достаточно высокие требования предъявляются к их надёжности. Только представьте, в каких условиях приходится работать свечам – высокое напряжение, подающееся на их электроды (до 40 000 Вольт), высокие температуры, достигающие 1000 градусов и агрессивные химические процессы, связанные со сгоранием топлива. Всё это диктует определённые условия, которым должно отвечать устройство свечи зажигания, и об этом далее…

Устройство свечи зажигания

Несмотря на всю ответственность, лежащую на плечах свечей, их конструкция довольно простая. Как говорится: «Чем проще, тем надёжней». Состоит она из таких частей:

  • контактный стержень (наконечник);
  • центральный электрод;
  • изолятор из керамики;
  • металлический корпус;
  • резистор;
  • боковой электрод.

Контактный стержень или, как его ещё называют, наконечник предназначен для соединения с высоковольтными проводами системы зажигания.

Другим концом стержень через резистор, служащий для снижения уровня помех от искрового разряда, соединён с центральным электродом, и все эти элементы помещены в изолятор из тугоплавкой керамики.

Изолятор, как и следует из его названия, служит для предотвращения короткого замыкания между центральным электродом, на который подаётся напряжение до 40 000 Вольт и корпусом, имеющим надёжное электрическое соединение с «массой». Изолятор имеет не только наружную часть, которая видна, но и внутреннюю (так называемый тепловой конус), выходящую прямо в камеру сгорания цилиндра мотора.

При правильном режиме работы силового агрегата и свечи, тепловой конус выполняет очень важную роль – на его поверхности из-за высокой температуры догорают частицы сажи, происходит самоочищение свечи от продуктов горения топлива и не накапливаются отложения.

Но если вдруг температура теплового конуса превышает допустимую, то может происходить калильное зажигание смеси – крайне негативное явление, при котором горючее воспламеняется не от искры, а от разогретого до очень высоких температур изолятора.

Металлический корпус объединяет вышеперечисленные внутренние детали и имеет резьбу для ввинчивания в посадочное место.

Ну и последний элемент – боковой электрод. Он приварен к корпусу и располагается вблизи центрального электрода. Именно между ними и проскакивает искра, оживляющая бензиновый двигатель.

Что нужно знать автовладельцу?

Автовладельцу полезно знать не только устройство свечи зажигания, но и её основные характеристики. Только так можно подобрать оптимальную модель этой детали, которая лучше всего подойдёт для мотора. Их несколько:

  • калильное число – очень важный параметр, от него зависит, будет ли происходить калильное зажигание смеси в цилиндрах, которое может привести к серьёзным поломкам двигателя. У каждого мотора в спецификациях указано рекомендуемое значение этого параметра и крайне желательно использовать соответствующие свечи – не с большим и уж тем более не с меньшим числом;
  • искровой промежуток – по сути, это расстояние между центральным и боковым электродом. Чем оно меньше, тем меньшее напряжение необходимо для образования искры;
  • способность к самоочищению – то, как свеча справляется с продуктами сгорания топлива и отложениями. Какой-либо объективной шкалы этот параметр не имеет – верить приходится производителям на слово;
  • рабочая температура свечи – должна находиться в пределах 500 – 900 градусов по Цельсию;
  • диаметр свечи и длина резьбы – первый параметр обычно составляет 14 мм, а вот второй зависит от мощности мотора – чем больше лошадей под капотом, тем длиннее должна быть резьба, как правило, от 12 до 25 мм.

Многие из этих характеристик производители указывают на корпусе свечи в виде специальных шифров, разгадать которые можно при помощи таблиц.

Также существуют и таблицы взаимозаменяемости – модель какой свечи без проблем можно заменить на другую.

Как мы можем видеть, друзья, героиня сегодняшней статьи — элемент непростой и для автолюбителя важно знать не только устройство свечи зажигания, но и её параметры, для того чтобы при замене не возникло проблем с силовым агрегатом, которые могут обернуться дорогостоящим ремонтом.

На этом рассказ про свечу подходит к концу, а я приступлю к подготовке следующих статей, в которых поведаю вам о других секретах, скрывающихся в недрах автомобилей.

До встречи!

Как работают свечи зажигания их строение и разновидности

Без свечи зажигания современный бензиновый двигатель не смог бы работать. К тому же относительно незаметная часть должна выдерживать значительную температуру и давление. Как работают свечи зажигания и каковы их наиболее важные характеристики?

Первое практическое применение свечи зажигания в двигателе внутреннего сгорания связано с именем бельгийца Джозефа Ленуара. Произошло это в 1860 году. Он использовал такое устройство для воспламенения в своём двигателе. Но патентование свечи зажигания было впервые осуществлено примерно тридцать восемь лет спустя. И сразу три изобретателя имели к этому отношение: Никола Тесла, Фредерик Ричард Симс и Роберт Бош. Позже со свечами зажигания стали связывать и другие известные имена. Например, Альберт Чемпион — основатель известной компании по их производству.

Условия работы, которым не позавидуешь.

Свеча зажигания с виду является мелкой деталью, но условия, в которых она должна работать, заслуживают как минимум признания. Так как удельная мощность двигателей увеличивается и в то же время прилагаются усилия, чтобы продлить срок службы изделий, к ним предъявляются всё более высокие требования. Впрочем, судите сами. Так как свеча зажигания входит в камеру сгорания двигателя, она должна быть способна выдерживать быстрые изменения температуры в диапазоне приблизительно от 2000 до 2500 градусов, а давление до 6 бар. В то же время при впуске давление в цилиндре падает ниже атмосферного и одновременно снижается температура приблизительно до 80 градусов. Но и это ещё не всё.

Интересно — что для шестицилиндрового двигателя при 5000 оборотов в минуту каждую минуту требуется 15 000 искровых разрядов! За одну минуту каждая свеча воспламеняет смесь 2500 раз, а это более чем 40 раз в секунду! Ещё изделие подвергается неблагоприятным химическим воздействиям, так как окружающая среда внутри камеры сгорания довольно агрессивная, не говоря уже о различных условиях работы двигателя. А ещё скачки напряжения в диапазоне от 25 до 30 кВ.

О принципе разряда

Воспламенение смеси свечой зажигания осуществляется за счёт возникновения искры между электродами. Речь идёт о так называемом разряде между электродами. Фактически искра возникает в момент, когда имеет место превышение пробойного напряжения между центральным и боковым электродом (их может быть и больше). То есть происходит преобразование энергии из катушки зажигания в электрическую искру. Оценивается так называемое напряжение дугового перекрытия. Его значение зависит от расстояния между электродами, геометрии электродов, давления в камере сгорания и от соотношения воздуха и топлива в момент воспламенения — то есть от насыщенности смеси. Во время работы двигателя происходит постепенный износ устройства, который проявляется увеличением расстояния между электродами, что приводит к постепенному увеличению пробойного напряжения. Насколько важна хорошая изоляция?

Строение свечи зажигания

Итак, из чего свеча зажигания состоит? Корпус изделия формирует изолятор. Ранее использовалась слюда, сегодня керамика, совсем недавно начали применять так называемый корунд или оксид алюминия. В самом верху устройства имеется контактный вывод для присоединения кабеля системы зажигания или, возможно, размещения катушки зажигания (для прямого зажигания FPS с отдельной катушкой для каждой свечи). Далее, следует металлический корпус, частью которого является резьбовое соединение, с его помощью изделие завинчивается в головку блока цилиндров. С ним и, следовательно, металлическим корпусом соединяется внешний (иногда его также называют боковым) электрод. По центру свечи расположен центральный положительный электрод, соединённый с контактным выводом для присоединения высоковольтного кабеля системы зажигания и герметично упакованный в стекло или кремний. Внешний электрод электрически соединён с кузовом транспортного средства, то есть отрицательным полюсом электрической системы.

Разновидности свечей зажигания

Существует много разновидностей свечей. С первого взгляда можно увидеть отличия в диаметре резьбы: M18, M14, M12 и M10. Вместе с этим имеется и различный шаг резьбы: от максимального 1,5 до 1,25 и даже 1,0 мм. Далее, различают форму опорной (уплотнительной) поверхности свечи в головке блока цилиндров. Она может быть конический или плоской. Есть свечи с короткой и длинной резьбой.

Дальнейшее деление происходит по компоновке (структуре) искры или количеству внешних электродов, их может быть до четырёх. Кроме того, свечи могут отличаться материалом, используемым для изготовления электродов, формой корпуса и уровнем помех.

Для обеспечения имеющихся и постоянно растущих требований к свече зажигания важное значение имеет выбор правильного материала для электрода. Средние изделия обычно изготавливаются таким образом, чтобы соблюдался компромисс между прочностью и расходом материалов. Используются сплавы вольфрама, платины и иридия. Как альтернатива может быть сплав хрома и железа. А ещё лучше серебро, которое обладает превосходными свойствами с точки зрения тепловой нагрузки, отличается износоустойчивостью и продлевает срок службы свечи до 70 000 км. Недостатком является, конечно же, цена. Кроме того, используется платина. Она стоит дороже, но хорошо противостоит выгоранию и коррозии. Очень часто центральный электрод состоит из двух различных материалов.

Особенности свечей зажигания.

При рассмотрении свечей зажигания оцениваются, помимо всего прочего, три важных свойства, от которых зависят другие их характеристики.

  • Первым является уже упомянутое расстояние между электродами, в народе его называют зазор. Это минимальное расстояние между центральным и боковым электродами. Чем меньше расстояние, тем меньше напряжение электрической дуги (пробойное) требуется, чтобы произвести искру.Но на небольшом расстоянии между электродами искра короткая. Вследствие этого выделяется мало энергии, что снижает обеспечение сжигания смеси. Происходит пропуск зажигания, работа двигателя более шумная, к тому же ухудшаются показатели выбросов отработанных газов. И наоборот, большее расстояние требует высокого напряжения зажигания и может привести к пропуску зажигания при высоких оборотах двигателя.
  • Второй особенностью является положение искрового промежутка. Это расстояние конца центрального электрода от фронтальной поверхности резьбового соединения свечи зажигания. Оно, как правило, находится в интервале от 3 до 5 мм. Но у гоночных двигателей это значение может быть даже отрицательным. Центральный электрод, таким образом, погружён в резьбовую часть.
  • Третьей особенностью является значение теплопередачи свечи зажигания. Речь идёт о мере тепловой нагрузочной способности изделия, которая, таким образом, должна быть адаптирована к характеристикам двигателя. Свеча зажигания во время работы не должна превышать определённую температурную зону. И на практике некоторые устройства могут в одном двигателе чрезмерно нагреваться, а в другом рабочая температура будет слишком низкая.

Что такое калильное число

Различают горячие свечи с высокой температурой, которую они смогут выдерживать, и холодные, их температура эксплуатации, наоборот, ниже. Значение теплопередачи свечи зажигания в основном определяет размер поверхности нижней части изолятора. Если передний край изолятора длинный, устройство будет иметь высокую способность выдерживать температуру. С другой стороны, короткий передний край изолятора имеет холодная свеча (с низкими температурными свойствами).

Как понять, подходят ли свечи зажигания.

Описанные выше качества и в результате различия между отдельными видами свечей в плане их использования интересны, но на практике, точнее, для того, чтобы понять, какие свечи нужны двигателю вашего автомобиля, эти знания совершенно не требуются. При покупке изделий важна только корректная маркировка, которая гарантирует, что они предназначены именно для конкретного двигателя.

К сожалению, разные производители используют различные методологии маркировки свечей. К счастью, есть переводная таблица, которая должна быть доступна у каждого продавца автозапчастей. Любопытно отметить, например, что изделие Bosch W7D у компании Champion указывается как N9Y, а у NGK его называют BPM7. Причём в плане свойств и характеристик это одна и та же свеча. Дальше будет…

Свеча зажигания - это... Что такое Свеча зажигания?

Свечи зажигания

Свеча зажигания — устройство для воспламенения топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, накаливания, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджог горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом цикле, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания 1 — Контактный вывод 2 — рёбра изолятора 3 — изолятор 4 — металлическая оправа 5 — центральный электрод 6 — боковой электрод

7 — уплотнитель

Свеча зажигания состоит из металлического корпуса, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод, расположенный в верхней части свечи, предназначен для подключения свечи к высоковольтным проводам системы зажигания или непосредственно к индивидуальной высоковольтной катушке зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000 °C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Цоколь (корпус)

Служит для заворачивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированной никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свеч снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения — так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов, истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается. Эффективность «форкамерных» свеч поставлена под сомнение проведенным экпериментом.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор — минимальное расстояние между центральным и боковым электродом. Величина зазора — это компромисс между «мощностью» искры, то есть размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяемые зазором:

  1. Чем больше зазор — тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Слишком увеличивать зазор тоже нельзя, иначе высокое напряжение будет искать более лёгкие пути — пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т. д.
  2. Чем больше зазор — тем сложнее пробить его искрой. Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = Uпр/h, где h — расстояние между электродами, называется электрической прочностью промежутка. То есть чем больше зазор — тем бо́льшее напряжение пробоя Uпр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса, но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять — оно определяется катушкой зажигания. А вот зазор h мы поменять можем.
  3. Напряжённость поля в зазоре определяется формой электродов. Чем они острее — тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых и платиновых свечей с тонким Ц. Э.).
  4. Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае — от плотности воздушно-бензиновой смеси.

Чем она больше — тем сложнее пробить. Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.). Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, средние. Суть данной классификации — в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих «самоочищению» их поверхности от продуктов сгорания топливной смеси — нагара, сажи и т. п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета «кофе с молоком».

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора, или вообще делает его невозможным. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

  • Внутренние
    • конструкция электродов и изолятора (длинный электрод нагревается быстрее)
    • материал электродов и изолятора
    • толщина материалов
    • степень теплового контакта элементов свечи с корпусом
    • наличие медного сердечника ЦЭ
  • Внешние
    • степень сжатия и компрессии
    • тип топлива (более высокооктановое обладает большей температурой сгорания)
    • стиль езды (на больших оборотах и нагрузках двигателя нагрев свечей больше)

Горячие свечи — конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Так как в этих случаях меньше температура в камере сгорания.

Холодные свечи — конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Так как в этих случаях больше температура в камере сгорания.

Средние свечи — занимают промежуточное положение между горячими и холодными (самые распространенные)

Оптимальные свечи — конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя.

Унифицированные свечи — калильное число захватывает диапазон холодных и горячих свечей. Именно благодаря «полуоткрытости» свечи ей не страшны проблемы вентиляции и засорения продуктами неполного сгорания.

Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Применяются следующие типы резьбы:

  • M10×1 (мотоциклы, например, свечи типа «Т» — ТУ 23; бензопилы, газонокосилки);
  • M12×1,25 (мотоциклы);
  • M14×1,25 (автомобили, все свечи типа «А»);
  • M18×1,5 (свечи марки «М8», устанавливались на «старые» автомобильные двигатели ГАЗ-51, ГАЗ-69; «тракторные» свечи; свечи для газопоршневых ДВС и др.)

Вторым классификационным признаком служит длина резьбы:

  • короткая — 12 мм. (ЗИЛ, ГАЗ, ПАЗ, УАЗ, Волга, Запорожец, мотоциклы);
  • длинная — 19 мм. (ВАЗ, АЗЛК, ИЖ, Москвич, Газель, практически все иномарки);
  • удлинённая — 25 мм. (современные форсированные ДВС);
  • на малогабаритные двигатели могут устанавливаться свечи с более короткой резьбой (меньше 12 мм)

Размер головки под ключ (шестигранник):

  • 24 мм (свечи марки «М8» с резьбой M18×1,5)
  • 22 мм (свечи марки «А10», двигатели автомобилей ЗИС-150, ЗИЛ-164)
  • нормальная — 21 мм (традиционная, для ДВС с двумя клапанами на цилиндр);
  • средняя — 18 мм (для ДВС некоторых мотоциклов)
  • уменьшенная — 16 мм или 14 мм (современная, для ДВС с тремя или четырьмя клапанами на цилиндр);

Калильное число (тепловая характеристика):

  • Горячие свечи 11-14;
  • Средние свечи 17-19;
  • Холодные свечи 20 и более;
  • Унифицированные свечи 11-20

Способ уплотнения по резьбе:

  • С плоской прокладкой (с кольцом)
  • С конусным уплотнением (без кольца)

Количество и вид боковых электродов:

  • Одноэлектродные — традиционные;
  • Многоэлектродные — несколько боковых электродов;
  • Специальные, более стойкие электроды для работы на газе или для большего пробега;
  • Факельные — унифицированные свечи зажигания, присутствует конусный резонатор, для симметричного поджига топливной смеси.
  • Плазменно-форкамерные — боковой электрод выполнен в виде сопла Лаваля. Совместно с корпусом свечи образует внутреннюю форкамеру. Зажигание происходит форкамерно-факельным способом.

См. также

  • Свеча накаливания
  • Bosch
  • NGK

Ссылки

Свечи зажигания. Назначение и устройство

Свеча зажигания служит для переноса в цилиндр двигателя подающегося высокого напряжения, с целью создания искры зажигания и воспламенения рабочей смеси. Кроме того, свеча должна изолировать от блока цилиндров подающееся на нее высокое напряжение (более 30 кВ), снижать пробои и прорывы, а также герметично закрывать камеру сгорания. Кроме того, она должна обеспечивать соответствующий диапазон температур во избежание загрязнения электродов и возникновения калильного зажигания. Устройство типичной свечи зажигания показано на рисунке.

Рис. Свеча зажигания производства фирмы «Bosch»

Стержень клеммы и центральный электрод

Стержень клеммы изготовлен из стали и выступает из корпуса свечи зажигания. Он служит для присоединения провода высокого напряжения или напрямую установленной стержневой катушки зажигания. Электрическое соединение между стержнем клеммы и центральным электродом выполнено с помощью расположенного между ними расплава стекла. К расплаву стекла домешивается наполнитель для улучшения степени обгорания и свойств сопротивления помехам. Так как центральный электрод находится непосредственно в камере сгорания, он подвержен воздействию очень высоких температур и сильной коррозии вследствие контакта с отработавшими газами, а также с остаточными продуктами сгорания масла, топлива и примесей. Высокие температуры искрообразования приводят к частичному расплавлению и выпариванию материала электродов, поэтому центральные электроды изготавливаются из никелевого сплава с добавками хрома, марганца и кремния. Наряду с никелевыми сплавами используются также сплавы серебра и платины, так как они незначительно обгорают и хорошо отводят тепло. Центральный электрод и стержень клеммы герметично закреплены в изоляторе.

Изолятор

Изолятор предназначен для отделения стержня клеммы и центрального электрода свечи зажигания от ее корпуса, чтобы не происходило пробоя высокого напряжения на «массу» автомобиля. Для этого изолятор должен обладать высоким электрическим сопротивления, поэтому он изготовлен из оксида алюминия, содержащего стекловидные добавки. Для снижения токов утечки горлышко изолятора имеет оребрение.

Наряду с механическими и электрическими нагрузками изолятор подвергается также высоким термическим нагрузкам. При работе двигателя на максимальных оборотах у опоры изолятора температура достигает 850 °С, а у головки изолятора — около 200 °С. Данные температуры возникают вследствие цикличных процессов сгорания рабочей смеси в цилиндре двигателя. Для того, чтобы температуры в области опоры не становились высокими, материал изолятора должен обладать хорошей теплопроводностью.

Общее устройство свечи зажигания

Свеча зажигания имеет металлический корпус, который вкручивается в соответствующее отверстие в головке блока цилиндров. В корпус свечи зажигания встроен изолятор, для герметизации которого используются специальные внутренние уплотнения. Изолятор содержит внутри центральный электрод и стержень клеммы. После сборки свечи зажигания выполняется окончательная фиксация всех деталей путем термической обработки. Боковой электрод, изготовленный из того же материала что и центральный, приваривается к корпусу свечи. Форма и расположение бокового электрода зависят от типа и конструкции двигателя. Зазор между центральным и боковым электродами регулируется в зависимости от типа двигателя и системы зажигания.

Существует много возможностей расположения бокового электрода, что влияет на величину промежутка искрового разряда. Чистая искра образуется между центральным электродом и боковым, г-образной формы. При этом рабочая смесь легко попадает в промежуток между электродами, что способствует ее оптимальному воспламенению. Если кольцеобразный боковой электрод устанавливается на одном уровне с центральным, то искра может скользить над изолятором. В этом случае ее называют скользящим искровым разрядом, который позволяет сжигать наслоения и остаточный нагар на изоляторе. Улучшить эффективность воспламенения рабочей смеси можно либо увеличением длительности искрообразования, либо увеличением энергии искрообразования. Рациональной является комбинация скользящего и обычного искровых разрядов.

Рис. Типы свечей зажигания с воздушным скользящим искровым разрядом

Для снижения потребности в напряжении на свече зажигания со скользящим искровым зарядом может быть дополнительно установлен управляющий электрод. При увеличении температуры изолятора искрообразование способно происходить при меньшем напряжении. При длительном промежутке искрового разряда воспламенение улучшается как для бедной, так и для богатой смеси топлива с воздухом.

Для двигателей с впрыском топлива во впускной коллектор предпочтение отдается свече зажигания с траекторией искрового разряда, «растянутой» в камере сгорания, в то время как для двигателей с непосредственным впрыском топлива в камеру сгорания и послойным смесеобразованием свеча зажигания с поверхностным разрядом имеет преимущества благодаря лучшей возможности самоочищения.

При выборе подходящей для двигателя свечи зажигания важную роль играет ее калильное число, с помощью которого можно судить о тепловой нагрузке на опору изолятора. Данная температура должна быть примерно на 500 °С выше, чем температура, необходимая для самоочищения свечи от наслоений. С другой стороны, нельзя превышать максимальную температуру около 920 °С, иначе возможно возникновение калильного зажигания.

Если не достичь температуры, необходимой для самоочищения свечи, частицы топлива и масла, скапливающиеся у опоры изолятора, не будут сжигаться, и между электродами на изоляторе могут образоваться токопроводящие полосы, которые способны привести к пропускам искрообразования.

Если опора изолятора нагревается выше 920 °С, это приведет к неконтролируемому сгоранию рабочей смеси вследствие накаленной опоры изолятора во время сжатия. Мощность двигателя снижается, а свеча зажигания вследствие тепловой перегрузки может быть повреждена.

Свеча зажигания для двигателя выбирается согласно ее калильному числу. Свеча с маленьким калильным числом имеет незначительную поверхность поглощения тепла и подходит для двигателей с высокими нагрузками. Если двигатель нагружен слабо, устанавливается свеча зажигания с высоким калильным числом, имеющая большую поверхность поглощения тепла. Конструктивно калильное число свечи зажигания регулируется при ее изготовлении, например, с помощью изменения длины опоры изолятора.

Рис. Определение калильного числа свечи зажигания

При использовании комбинированного электрода, включающего электрод на никелевой основе с медным ядром, улучшается теплопроводность и вследствие этого отвод тепла от электрода.

К важным задачам при разработке свечи зажигания относится увеличение интервалов технического обслуживания. Вследствие коррозии, связанной с искровым разрядом, во время работы зазор между электродами увеличивается, а вместе с тем увеличивается и потребность в напряжении во вторичной цепи системы зажигания. При сильном износе электродов свечу зажигания следует заменить. На сегодняшний сроки службы свечей зажигания, в зависимости от их конструкции и материалов, составляют от 60000 км до 90000 км. Это достигается улучшением материала электродов и использованием большего количества боковых электродов (2, 3 или 4 боковых электрода).

Видео: Какие свечи зажигания лучше?


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости