С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Напряжение датчика кислорода


Как проверить датчик кислорода (лямбда-зонд)?

04.06.2013

Прежде чем заменить датчик кислорода, нужно удостовериться, что именно он является причиной неправильной работы двигателя: провалы при разгоне, падение мощности, повышенный расход, троение двигателя. Для этого нам нужно проверить датчик кислорода.

Перечень возможных неисправностей лямбда-зонда (датчика кислорода):

  • неработающий подогрев;
  • потеря чувствительности — уменьшение быстродействия (как отремонтировать датчик (востановить чувствительность)?).

Как правило, смерть датчика чаще всего на автомобиле не фиксируется, если причина находится в чувствительности датчика. Но если произошел обрыв цепи подогрева датчика, то бортовой компьютер моментально выдаст вам ошибку.

Распиновка датчика кислорода

  • А- Контакт чувствительного элемента датчика (+).
  • B- Контакт нагревательного элемента датчика (+).
  • C- Контакт Чувствительного элемента датчика (-).

Схема датчика кислорода (лямбда-зонда)

Проверка питания датчика (напряжение на датчике кислорода)

Прежде чем заменить датчик, нужно удостовериться, что на него поступает питание и исправны все цепи. Для этого открываем капот и отсоединяем разъем датчика (он прикреплен хомутом к патрубку системы охлаждения).

  1. Проверяем цепь нагревательного элемента. Берём тестер и его «минус» подключаем к двигателю, «плюс» крепим на контакт «В». Включаем зажигание и смотрим на показания тестера: должно показывать 12в. Если показания тестера меньше 12в или вообще отсутствуют, то либо разряжен аккумулятор (что мало вероятно), либо обрыв цепи питания (устраняем неисправность). Так же может быть неисправна эбу, но как правило, бортовой компьютер сразу свидетельствует о данной ошибке.
  2. Проверяем цепь чувствительного элемента. Измеряем напряжение между контактами «А» и «С». минус на «С» плюс на «А». Напряжение должно быть 0,45в. Если напряжение отсутствует или отличается на 0,02в и более – то неисправна цепь питания (нужно найти и устранить) или неисправен ЭБУ (что так же мало вероятно).

Полностью проверить датчик на работоспособность  можно только при помощи осциллографа, чего нет у большинства автолюбителей, поэтому я не вижу смысла описывать данную ситуацию. Скажу лишь то, что для проверки нужно будет искусственно прибеднять и обогащать топливную смесь и смотреть на показания датчика. Если датчик отъездил уже не мало – более 100.000км, то его можно смело заменить. Потому что, даже если он и рабочий, чувствительность заметно ухудшилась – что ведёт к лишним затратам на бензин.

Существуют так называемые «иммитаторы лямбда-зонда». Скажу сразу, что они не подойдут к нашим авто, т.к. ЭБУ не читает их сигналы.

Следует точно понимать принцип работы датчика. Обратите внимание на следующие ошибки.

Ошибка Р0131 Низкий уровень сигнала датчика кислорода 1
Ошибка Р0132 Высокий уровень сигнала датчика коленвала 1

Низкий уровень сигнала датчика означает, что смесь слишком богатая.

Высокий уровень датчика показывает что смесь слишком бедная.

Обратите внимание, что данные ошибки показывают состояние топливной смеси, а не фиксируют неисправность датчика. Поэтому, при возникновении данных ошибок, сперва нужно смотреть на давление топлива и наличие в системе впуска подсосов воздуха, а уже потом обращать внимание на сам датчик.

4 способа проверки лямбда зонда в домашних условиях

Как проверить лямбда зонт самостоятельно? С этим вопросом сталкиваются большое количество владельцев автомобилей как отечественного производства, так и иномарок. В сегодняшней статье я расскажу вам о четырех полноценных способах проверки датчиков кислорода. Кстати проверка этих датчиков может потребоваться если сканер показывает ошибку, связанную с лямбда зондом, например низкий уровень сигнала датчика кислорода или увеличился расход топлива.

Важная информация: Лямбда зонт или датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Датчики лямбда зонда – какие бывают?

Современные датчики кислорода имеют 4-х проводную систему, но бывают исключения! Нередко встречаются одно, двух и трех проводные датчики лямбда зонд.

Современные датчики кислорода

У четырехпроводного датчика два провода идут на цепь подогрева и один провод – сигнальный. Также один провод идёт на массу проверки лямбда зонда, которую можно произвести самостоятельно.

Проверка напряжения в цепи подогрева датчика

Важно знать! Принято считать, что оптимальное напряжение в цепи подогрева датчика кислорода равняется 12,45В.

Для проверки напряжения в цепи подогрева датчика кислорода нам понадобится вольтметр.

  1. Включаем зажигание автомобиля
  2. Острыми щупами протыкаем провода или втыкаем щупы от вольтметра в разъемы провода идущий на датчик кислорода.
  3. Замеряем напряжение.

Напряжение на этих проводах должно равняться напряжению аккумуляторной батареи, примерно 12, 45В. Плюс приходит обычно приходит на нагреватели датчика кислорода напрямую через предохранители, а минус подается с блока управления двигателем. Поэтому если на нагреватель датчика кислорода не приходит плюс, то смотрите цепь, аккумулятор, предохранитель и датчик кислорода. Кстати в некоторых моделях автомобиля возможно наличие реле в этой цепи. Но если нет минуса, то смотрите всю цепь до блока управления. Возможно потерялся контакт в каком либо разъеме, либо блок управления по каким то причинам не видит минус.

Проверка исправности нагревателя лямбда зонда при помощи тестера

Для того, чтобы проверить сам нагреватель лямбда зонда путем замера сопротивления нам понадобиться Омметр, то есть тестер или мультиметр в режиме измерения сопротивления. Отсоедините разъем датчика кислорода и измеряете сопротивление между проводами нагревателя. Сопротивление может быть разное, но обычно оно находится в пределах 2-10 Ом. Если сопротивление не показывается вообще, то скорее всего в нагревателе датчика кислорода (лямбда зонда) произошёл обрыв и он требует замены.

Проверка опорного напряжения датчика кислорода (лямбда зонд)

Важно знать! Принято считать, что оптимальное опорное напряжение датчика кислорода равняется 0,45В.

И так первую проверку лямбда зонда, которую мы можем провести самостоятельно, это проверка опорного напряжения. Для этого нам понадобится тестер в режиме Вольтметра. Включаем зажигание и замеряем напряжение между сигнальным проводом и массой. В большинстве моделей автомобилей это напряжение должно равняться 0,45В. Допускаются небольшие отступления от нормы как в ту так и в другую сторону, но здесь уже все зависит от качества и состояния проводки в автомобиле.

Проверка сигнала лямбда зонда

Для проверки нагревателя лямбда зонда желательно иметь осциллограф либо осциллоскоп, но так же подойдет мото-тестер или хотя бы стрелочный, но не цифровой вольтметр. В принципе для данного способа проверки подойдет и цифровой вольтметр, но он более инертный, поэтому намного хуже реагирует на изменение показаний.

И так теперь проверяем сам сигнал лямбда зонда! Это самый сложный и ответственный способ. Первое, что необходимо сделать это обзавестись специальными приборами, которые я перечислил выше.

И так, запускаем двигатель прогреваем его до рабочей температуры. Дело в том, что датчик кислорода начинает работать только после прогрева, не после прогрева ДВС, а после прогрева датчика кислорода. На эту процедуру блоком отводиться определенное время, поэтому проверять сразу датчик кислорода нет никакого смысла.

Обычно, датчик кислорода начинает работать при температуре двигателя 60 – 70 градусов. Подсоединяете провода щупа между сигнальными проводами и проводами массы, поднимаете обороты двигателя примерно до 3000 об/мин, и наблюдаете за изменениями показаний лямбда зонда.

Сигнал с датчика кислорода должен меняться от 0,1 до 0,9 Вольт. Если изменения происходят в меньшем диапазоне, то прибор просто не успевает реагировать, либо датчик кислорода неисправен и требует замены.

Так же при 3000 об/мин засеките время, при котором меняются показания от большего к меньшему. При оптимальном варианте работы ДК за 10 секунд должно произойти 8 – 9 изменений. Если показания датчика изменяются реже, то вероятна ошибка медленный отклик датчика кислорода и он подлежит замене.

Видео: 4 способа проверки датчика кислорода и лямбда зонда

Поддержи сайт - Поделись статьей в социальных сетях:

Нет комментариев

Ошибка P0130 – низкое напряжение в цепи лямбда зонда: как устранить, в чем причины и как проявляется

Столкнувшись во время диагностики автомобиля сканером с ошибкой P0130, водитель имеет возможность самостоятельно устранить ее причину, не обращаясь в сервисный центр. В большинстве случаев причина возникновения рассматриваемой ошибки не требует особых диагностических приборов и наличия специальных знаний. Сама ошибка P0130 указывает, что имеет место быть низкое напряжение в цепи датчика кислорода, установленного до катализатора. Такая проблема может наблюдаться при неисправности самого датчика, проводки или ряда других элементов. Перед тем как заниматься ремонтом, следует досконально изучить ошибку.

Оглавление: 1. Как ведет себя автомобиль при ошибке P0130 2. Как диагностируется ошибка P0130 3. Что делать, если возникла ошибка P0130

Как ведет себя автомобиль при ошибке P0130

Ошибка P0130, указывающая на проблемы с напряжением в цепи датчика кислорода, напрямую сказывается на работе двигателя. Наиболее заметны последствия от ее возникновения на высоких оборотах работы автомобильного двигателя. Водителя ожидают следующие неприятности:

  • Повышенный расход топлива;
  • Неустойчивая работа двигателя на высоких оборотах;
  • Потеря в динамике – автомобиль начнет медленнее разгоняться, и даже при усилении воздействия на педаль газа ситуация не изменится.

Чаще всего последствия от ошибки P0130 проявляются не сразу.

Важно отметить, что управлять автомобилем, у которого диагностирована ошибка P0130, крайне опасно с точки зрения повышения вероятности выхода из строя дорогостоящих компонентов двигателя.

Как диагностируется ошибка P0130

Чтобы ошибка P0130 попала в память ЭБУ автомобиля, необходимо, чтобы датчик кислорода был неисправен на протяжении 1 минуты или более. Если с датчика не поступают данные (или они идут ошибочные, например, лямбда зонд медленно изменяет значения) на протяжении минуты, то информация об ошибке P0130 оказывается в памяти. Спустя 10 секунд после этого, водитель будет извещен об имеющихся проблемах в работе мотора загоревшейся лампочкой Check Engine на приборной панели.

Стоит отметить, что если из строя вышел датчик кислорода, и от него не поступает никакой сигнал, вместе с ошибкой P0130 может быть диагностирована ошибка P0134.

Что делать, если возникла ошибка P0130

Как можно понять из описания проблемы, факторов, которые приводят к ошибке P0130, не так много. Соответственно, водитель или мастер могут избавиться от неисправности, выполнив следующий алгоритм действий, чтобы определить причину проблемы и устранить ее:

  1. Первым делом нужно проверить провода, которые питают первый лямбда зонд (установленный до катализатора);
  2. Если питание по проводам поступает, внимательно осмотрите на наличие коррозии, повреждений, нагара, загрязнения и других дефектов разъем датчика кислорода;
  3. Далее рекомендуется проверить напряжение между сигнальным проводом лямбда зонда и массой. Для этого нужно подключить к ним щупы вольтметра. Если датчик кислорода исправен, его напряжение будет находиться на уровне около 0,45 Вольт (если вольтметр показывает другое число, рекомендуется уточнить значение напряжения для конкретной модели автомобиля, поскольку оно может отличаться);
  4. Также рекомендуется при помощи омметра проверить сопротивление нагревателя датчика кислорода (два белых провода). Показатель сопротивления будет варьироваться от 2 до 10 Ом, в зависимости от модели автомобиля. Точное значение можно узнать из документации к датчику;
  5. Если проблема не связана с проводкой и датчиком кислорода, нужно проверить датчик массового расхода воздуха и герметичность выпускного коллектора, возможно требуется заменить прокладки. Обязательно диагностируйте наличие подсоса в цепи после расходомера.

 В зависимости от того, какая проблема была установлена в ходе диагностики, необходимо провести соответствующие ремонтные работы:

  • При проблемах с проводкой: найти место обрыва и устранить неисправность;
  • При трещине в выпускном коллекторе: выполнить необходимые работы для создания герметичности (сварка или замена неисправного элемента);
  • При поломке датчика: заменить датчик. Здесь важно отметить, что не стоит экономить на датчике кислорода и приобретать дешевый китайский аналог оригинального лямбда зонда, поскольку часто с ними возникают проблемы. Также не рекомендуется устанавливать так называемую «обманку» и прошивать ЭБУ. Она может избавить от ошибки P0130, но позже возникнут другие неисправности.

Выполнив необходимые действия для устранения ошибки P0130, следует дать некоторое время поработать мотору в различных режимах (особенно в тех, в которых загоралась индикация Check Engine) и сбросить ошибку.

Чаще всего ошибка P0130 диагностируется на автомобилях Opel, Kia, Hyundai, Subaru и Ford.

(427 голос., средний: 4,56 из 5) Загрузка...

Руководства по ремонту

Для того, чтобы сделать более понятной тему кислородного датчика и упростить проверку в авторемонтной мастерской, мы хотели бы в данном статье рассмотреть устройство, принцип работы и различные возмож­ности проверки кислородного датчика.

Как правило, работоспособность кислородного датчика проверяется при обычной проверке выхлопных газов двигателя. Так как кислородный датчик подвержен определённому износу, то его нужно регулярно (примерно после каждых 30.000 км пробега) проверять на надёжность работы, например, в рамках технического осмотра.

Для чего нужен кислородный датчик ?

Вследствие ужесточения законов об ограничении вредных автомобильных выхлопов технологии последующей обработки выхлопных газов были значительно улучшены. Для обеспечения оптимальной работы катализатора выхлопных газов требуется оптимальное сгорание топлива. Это достигается за счёт состава рабочей смеси из расчёта 14,7 кг воздуха на 1 кг топлива (стехиометрическая смесь). Эта оптимальная смесь обозначается греческой буквой λ (лямбда). Показатель лямбда отражает соотношение между теоретической потребностью в воздухе и фактическим его поступлением.

Устройство и принцип действия кислородного датчика

Принцип действия кислородного датчика основан на сравнительном измерении кислорода. Это означает, что остаточное содержание кислорода в выхлопных газах (около 0,3% — 3%) сравнивается с содержанием кислорода (около 20,8%) в окружающем воздухе. Если содержание кислорода в выхлопных газах составляет 3% (обеднённая смесь), то в результате возникшей разницы с содержанием кислорода в окружающем воздухе возникает сигнал напряжением 0,1 вольт. Если содержание кислорода в выхлопных газах меньше 3% (богатая смесь), то напряжение сигнала датчика в результате увеличения разницы с содержанием кислорода в окружающем воздухе возрастает до 0,9 вольт. Измерение остаточного содержания кислорода производится при помощи различных кислородных датчиков.

Измерение заданного напряжения датчика Особенность (датчик изменения температуре напряжений)

Зонд этого типа состоит из продолговатого полого внутри стержня, изготовленного из керамики на основе окиси циркония. этого твёрдого электролита заключается в том, что при около 300 °С он становится проницаемым для ионов кислорода. Обе стенки этого керамического элемента покрыты тонким пористым слоем платины, который служит электродом. С внешней стороны элемент обтекается выхлопными газами, внутренняя часть заполнена воздухом для сравнения. Вследствие различной концентрации кислорода по обеим сторонам происходит обусловленное особенностями керамического элемента перемещение ионов кислорода, которое вызывает образование электрического потенциала. Это напряжение используется как сигнал для управляющего устройства, которое изменяет состав рабочей смеси на основании остаточного содержания кислорода в выхлопных газах. Этот процесс — измерение остаточного содержания кислорода в выхлопных газах и обогащение или обеднение рабочей смеси — повторяется многократно в течение одной секунды, для получения соответствующей стехиометрической смеси.

 Измерение с использованием сопротивления датчика (датчик изменения сопротивлений)

Этот тип датчиков изготовлен из керамики на основе окиси титана – по многослойной технологии. Окись титана имеет свойство изменять своё сопротивление пропорционально содержанию кислорода в выхлопных газах. При высоком содержании кислорода (обеднённая смесь λ > 1) проводимость становится меньше, при малом содержании кислорода (богатая смесь λ < 1)  проводимость лучше. Для работы этого датчика не нужно иметь эталонный воздух для сравнения, однако через систему резисторов к нему должно подводиться от управляющего устройства напряжение 5 вольт. Вследствие падения напряжения на резисторах образуется сигнал, необходимый для работы управляющего устройства.

Оба измерительных элемента размещены в одинаковых корпусах. Защитная трубка предохраняет находящиеся в зоне действия выхлопных газов датчики от повреждений.

Подогрев кислородных датчиков: первые кислородные датчики не имели подогрева, поэтому их нужно было устанавливать рядом с двигателем, чтобы быстрее довести их до рабочей температуры. Сегодня кислородные датчики оснащены автономным подогревом. Поэтому их можно устанавливать на расстоянии от двигателя. Преимущество: они больше не подвергаются высоким тепловым нагрузкам. Благодаря автономному подогреву они быстро разогреваются до рабочей температуры, поэтому отрезок времени, в течение которого кислородный датчик не выполняет свои функции, очень мал. Также устраняется опасность переохлаждения на холостом ходу, когда температура выхлопных газов низкая. Кислородные датчики с подогревом имеют очень малое время срабатывания, что положительно влияет на скорость управления.

Широкополосные кислородные датчики

Кислородный датчик показывает обеднённый или богатый характер рабочей смеси в области λ = 1. С помощью широкополосного датчика мы получаем возможность получать точные значения λ как в области обеднённой (λ > 1), так и в области богатой (λ < 1) смеси. Датчик вырабатывает точный электрический сигнал, поэтому можно устанавливать любую паспортную характеристику, например, для дизельных двигателей, ДВС, работающих на обеднённой смеси, газовых двигателях и двигателях на газовых тепловых элементах. Широкополосный датчик работает, как и обычный датчик, по принципу сравнения с наружным воздухом. Дополнительно он имеет электрохимическую ячейку: нагнетательную ячейку. Через небольшое отверстие в ней выхлопной газ попадает в измерительную камеру — диффузионную щель. Для того, чтобы точно определить X здесь происходит сравнение содержания кислорода в наружном воздухе, служащем эталоном. Для получения управляющего сигнала к нагнетательной ячейке приложен электрический потенциал. Благодаря этому напряжению кислород из выхлопных газов подаётся в диффузионную щель или отводится из неё. Управляющее устройство регулирует величину напряжения таким образом, чтобы в диффузионной щели состав газов оставался постоянно равным λ =1  Если смесь обеднённая, то через нагнетательную ячейку кислород отводится наружу. Образуется положительный ток. Если смесь богатая, кислород из эталонного воздуха подаётся внутрь. Образуется отрицательный ток. При λ = 1 в диффузионную щель кислород не подаётся, ток равен нулю. Управляющий прибор оценивает этот ток, задаёт λ и, следовательно, состав рабочей смеси.

Использование нескольких кислородных датчиков

В V-образных и оппозитных двигателях с двухпоточным отводом выхлопных выхлопных газов используется обычно два датчика. Для каждого ряда цилиндров имеется свой собственный контур регулирования, который может составом смеси. Но и в двигателях по рядной схеме устанавливаются кислородные датчики для отдельных групп цилиндров (например, для цилиндров (1-3 и 4-6). В новейших двенадцатицилиндровых двигателях применяется до восьми кислородных датчиков. После введения процедуры EOBD должна проверяться работоспособность катализатора. Для этого дополнительные кислородные датчики устанавливаются после катализатора. С их помощью определяется способность катализатора накапливать кислород. Задача датчика, установленного после катализатора такая же, как и датчика, установленного перед катализатором. В управляющем устройстве сравниваются амплитуды кислородных датчиков. Вследствие способности катализатора накапливать кислород, амплитуды напряжения датчика, расположенного после катализатора, очень малы. Если накопительная способность катализатора падает, то амплитуды напряжения датчика после катализатора возрастают вследствие повышенного содержания кислорода. Высота амплитуд, которые возникают в датчике после катализатора, зависит от конкретной накопительной способности катализатора в данный момент, и изменяются с изменением числа оборотов и нагрузки. Поэтому при сравнении амплитуд учитываются также нагрузка и число оборотов. Если, несмотря на это, амплитуды напряжений обоих датчиков примерно одинаковы, накопительная способность катализатора исчерпана, например, в результате старения.

Диагностика и контроль с помощью кислородного датчика

В автомобилях, оснащённых собственной системой диагностики, возникающие в цепи регулирования неисправности распознаются самостоятельно и регистрируются в банке неисправностей. Сигнал неисправности показывается, как правило, миганием контрольной лампочки состояния двигателя. Для определения причины неисправности достаточно открыть с помощью прибора для диагностики банк регистрации неисправностей. Более старые системы не в состоянии определить, возникла ли данная неисправность по причине неисправной детали или, например, из-за дефекта кабеля. В этом случае автомеханик должен применить и другие способы проверки. В ходе EOBD в процесс проверки кислородных датчиков были включены: крепление проводников, эксплуатационное состояние, проверка на короткое замыкание на массу управляющего устройства, короткое замыкание на плюс, разрыв кабеля и старение кислородного датчика. Для определения сигналов кислородных датчиков в управляющем устройстве используется частота сигнала. Помимо этого, устройство рассчитывает следующие данные: максимальное и минимальное значения распознаваемого напряжения, время между положительным и отрицательным срезом, диапазон регулирования датчика по величине для обеднённой и богатой смеси, порог регулирования, напряжение датчика и длительность периода.

Как определяется максимальное и минимальное напряжение?

При запуске двигателя все старые значения минимум и максимум, сохранённые в управляющем устройстве, стираются. Значения минимум и максимум, задаваемые нагрузкой и числом оборотов, устанавливаются во время езды.

Расчёт времени между положительным и отрицательным срезом.

Если порог регулирования в результате скачка напряжения превысил верхний предел, то включается замер времени между положительным и отрицательным срезами. Если порог регулирования в результате скачка напряжения упал ниже нижнего предела, то замер времени прекращается. Отрезок времени между началом и окончанием замера времени измеряется счётчиком.

Распознавание старого или засорённого кислородного датчика.

Если датчик сильно состарился или, например, засорился топливными добавками, то это оказывает влияние на сигнал датчика. Сигнал датчика сравнивается с сохранённым сигналом. Медленно реагирующий датчик распознаётся, например, по периоду длительности сигнала, и регистрируется как неисправность.

Проверка кислородного датчика с помощью пользования осциллоскопа, тестера,тестера кислородного

Обычно перед каждой проверкой должен проводиться визуальный контроль, чтобы быть уверенным в том, что кабель и разъём исправны. Прибор для контроля выхлопных газов не должен показывать утечек. Для измерительным прибором рекомендуется использовать удлинитель. Нужно следить за тем, чтобы регулирование ? в отдельных эксплуатационных режимах было выключено, например, во время холодного запуска, до датчика, достижения рабочей температуры и при полной нагрузке.

Прибор проверки выхлопных газов

Одним из самых быстрых и простых способов проверки является измерение с помощью четырёхконтурного прибора контроля выхлопных газов. Проверка проводится в обычном для такого контроля режиме. При нагретом двигателе снимают шланг, как бы добавляя излишний мешающий воздух. Вследствие изменившегося состава выхлопных газов изменяется рассчитанный и показанный тестером показатель λ. При определённом значении λ система подготовки рабочей смеси должна распознать его и в течение определённого времени (как и при AU, равном 60 секундам) произвести регулировку. Если мешающую излишнюю величину убрать, то значение λ должно вернуться в первоначальное пол­ожение. Обычно при этом должны учитываться размеры мешающей величины и значения λ, данные производителем. При этом способе проверки определяется общая работоспособность регулятора λ. Проведение проверки электрическими методами невозможно. При этом способе существует опасность того, что современные системы управления двигателем, несмотря на та неработающий регулятор λ, благодаря точному распознаванию нагрузки , будут готовить рабочую смесь так, чтобы λ = 1.

Проверка с помощью тестера

Для проверки нужно использовать только высокоомный тестер с цифровой или аналоговой шкалой. Тестер с небольшим внутренним сопротивлением (обычно аналогового типа)будет сильно перегружать сигнал кислородного датчика и искажать его. Вследствие быстрого измен­ения напряжения лучше всего сигнал изучать на аналоговом приборе. Тестер включается параллельно сигнальному проводнику (чёрный проводник, смотри электрическую схему) кислородного датчика. Шкалу тестера установить на 1 или 2 вольта. После запуска двигателя на шкале появляется значение между 0,4-0,6 вольт (рекомендуемое напряжение). После достижения эксплуатационной температуры двигателя и кислородного датчика прежде устойчивое напряжение начинает изменяться между 0,1 и 0,9 вольт. Для достижения правильного результата измерения двигатель должен работать на скорости 2.500 оборотов. Благодаря этому обеспечивается нагревание датчиков, работающих без системы подогрева, до эксплуатационной температуры. Иначе, вследствие недостаточной температуры выхлопных газов в режиме холостого хода, существует опасность того, что датчик, работающий без системы подогрева, охладится и не будет генерировать никаких сигналов.

Проверка с помощью осциллоскопа

С помощью осциллоскопа нагляднее всего представить сигнал кислородного датчика. Основным условием, как и при проверке с помощью тестера, является разогрев двигателя, а также датчика до эксплуатационной температуры. Осциллоскоп подключается к сигнальному проводнику. Диапазон измерений зависит о типа осциллоскопа. Если прибор оснащён системой автоматического распознавания сигнала, то она должна быть включена. При ручной системе регулирования устанавливаем шкалу напряжений на 1-5 вольт и время на 1-2 секунды.

Вращение двигателя должно составлять примерно 2.500 оборотов. Переменное напряжение изображается в виде синусоиды. Этот сигнал характеризуется следующими параметрами: высота амплитуды (максимальное и минимальное напряжение 0,1 -0,9 вольт), время срабатывания и длительность периода (частота примерно 0,5-4 Гц, то есть до четырёх раз в секунду)

Проверка тестером кислородного датчика

Различные производители предлагают для проверки кислородных датчиков специальные тестеры. Этот прибор показывает работоспособность кислородного датчика при помощи светодиодов. Подключение производится, как и при использовании тестера и осциллоскопа, к сигнальному проводнику кислородного датчика. Как только датчик достигнет рабочей температуры и начнёт работать, светодиоды начнут мигать — в зависимости от состава рабочей смеси и прохождения напряжения (0,1-0,9 вольт) датчика. Все данные по установке данных прибора приводятся для измерения напряжения кислородного датчика из оксида циркония (принцип скачка напряжения). Для датчиков из оксида титана устанавливается диапазон 0-10 вольт, измеряемые напряжения колеблются в пределах 0,1-5 вольт. Следует руководствоваться данными производителя. Наряду с электронным контролем выводы о работоспособности датчика позволяет сделать также состояние защитной трубки собственно элемента датчика:

Защитная трубка покрыта толстым слоем копоти: двигатель работает на слишком богатой смеси. Датчик нужно заменить и устранить причины, ведущие к образованию богатой смеси, чтобы предотвратить новое загрязнение зонда копотью.

Блестящие отложения на защитной трубке: использования топлива с большим содержанием свинца. Свинец разрушает элемент датчика. Датчик нужно заменить, также нужно проверить катализатор. Заменить топливо, содержащее свинец, на топливо без свинца.

Светлые (белые или серые) отложения на защитной трубке: в двигателе сгорает масло, дополнительная присадка к топливу. Датчик нужно заменить, а также устранить причины сгорания масла.

Неправильная установка: в результате неправильной установки можно повредить кислородный датчик так, что он больше не будет обеспечивать надёжную работу. При установке нужно пользоваться только специальным монтажным инструментом, обращать внимание на величину крутящего момента.

Проверка датчика

Проверяется внутреннее сопротивление и подача напряжения на подогрева нагревательный элемент. Для этого отсоединить разъём кислородного кислородного датчика. Омметром со стороны датчика замерить сопротивление нагревательного элемента на обоих проводниках. Оно должно быть в пределах между 2 и 14 Ом. Замерить вольтметром подачу напряжения со стороны автомобиля. Напряжение должно составлять > 10,5 вольт (напряжение сети).

Существует целый ряд типичных дефектов кислородных датчиков, которые возникают очень часто. Предлагаемый перечень показывает, какие причины могут вызвать неисправность:

Если кислородный датчик подлежит замене, то при установке нового датчика следует соблюдать следующие требования:

  • используйте для снятия и установки только специальный инструмент
  • проверьте сохранность резьбы на устройстве для отвода выхлопных газов
  • используйте только ту смазку, которая специально предназначена для кислородных датчиков
  • избегайте попадания на измерительные элементы датчика влаги, масла, смазки, моющих и противокоррозийных средств
  • соблюдайте величину крутящего момента при затягивании резьбы М18х1,5, равную 40-52 ньютонометров.
  • при прокладке соединительных проводников следите за тем, чтобы они не соприкасались с горячими, движущимися предметами и острыми кромками
  • прокладывайте соединительные проводники нового датчика по возмо­жности так, как это было сделано на старом кислородном датчике
  • сохраните запас при монтаже соединительных проводников, чтобы они не оборвались при колебаниях и вибрации устройства для отвода выхлопных газов
  • предупредите клиента о том, чтобы он не использовал металлосодержащие присадки и топливо, содержащее свинец
  • не используйте кислородные датчики, упавшие на пол, или имеющие механические повреждения

[sam id=5]


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости