С-Петербург, улица Тосина 3
+7 (812) 917-84-85
+7 (921) 316-27-00

Шестерни коробки передач


Материалы для шестерен коробок передач

Категория:

   Автомобильные сцепления

Материалы для шестерен коробок передач

Для шестерен коробок передач должны применяться высококачественные стали, так как напряжения в зубьях этих шестерен исключительно велики. Зубья не только должны противостоять напряжениям изгиба от давления на зуб, но их рабочие поверхности должны иметь достаточную твердость, чтобы выдерживать весьма высокие удельные давления. Вместе с тем они не должны быть настолько хрупкими, чтобы выкрашиваться от ударов при включении шестерен.

Для шестерен применяются два типа сталей — цементуемые и закаливающиеся (иногда применяется термин «закаливаемые в масле»), Первые характеризуются низким содержанием углерода — обычно около 0,20%, тогда как вторые имеют среднее содержание углерода 0,40; 0,45 или 0,50%- В каждой группе наиболее дешевой является простая углеродистая сталь, например, марки SAE1020 в первой группе и SAE1045 — во второй. Однако простые углеродистые стали в настоящее время для автомобильных шестерен уже не применяются.

Наиболее существенным качеством для сталей, применяемых для изготовления шестерен коробок передач, является способность давать вязкую сердцевину зуба, могущую выдерживать сильные удары и твердую поверхность, хорошо противостоящую образованию раковин и износу. Кроме того, поскольку шестерни после нарезания зубьев подвергаются термообработке, сталь должна давать минимальное коробление при соответствующих термических операциях.

Цементованные шестерни. Цементуемые стали применяются для шестерен коробок передач значительно чаще, чем закаливающиеся стали, так как первые дают более твердую поверхность, лучше противостоящую, как отмечалось, образованию раковин и абразивному износу. В сталях для автомобильных шестерен стойкость в отношении образования раковин имеет большее значение, чем прочность на изгиб, потому что, как показали испытания шестерен, изготовленных современными методами, при постепенном повышении нагрузки до разрушения, раковины всегда появляются прежде, чем наступит поломка зуба. Легированные стали, применяемые для шестерен, могут быть подразделены на два основных класса: низколегированные и высоколегированные. Последние хотя и отличаются более высокими механическими качествами (исключая, возможно, твердость), но более дороги, вследствие чего их применение ограничивается областью наиболее тяжелой работы, как например, в коробках передач автобусов и грузовых автомобилей.

Цементуемые легированные стали для шестерен коробок передач включают следующие марки: никелевые стали 2315, 2320 и 2512, из которых две первые содержат 3,5%, а последняя — 5% никеля; хромоникелевая сталь 3120, хромомолибденовая сталь 4120, хромоникелемолибденовая сталь 4320 и никельмолибденовые стали 4615 и 4815. Некоторое применение имеет также хромистая модифицированная сталь 5210. Из никелевых сталей сталь 2512 является наиболее предпочтительной с точки зрения прочности шестерни, так как она дает очень вязкую сердцевину зуба. Однако эта сталь не позволяет достичь такой твердости поверхности, как некоторые другие стали, вследствие того, что в поверхностном слое удерживается некоторое количество аустенита. По этой причине, а также вследствие высокой стоимости ее применение рекомендуется только в тех случаях, когда предполагаются большие ударные нагрузки. Другой высоколегированной сталью является сталь 4320, содержащая, кроме молибдена, также хром и никель. Ее применение также практически ограничивается коробками передач автобусов и грузовых автомобилей.

Наиболее излюбленными сталями для шестерен коробок передач легковых автомобилей являются стали 4615 и 4620.

Хромистая сталь 5120 применяется в тракторных коробках передач. Она хорошо цементуется на большую глубину и поэтому является наиболее подходящей там, где требуется большое сопротивление абразивному износу и истиранию.

Цементация. Цементация, т. е. поверхностное науглероживание, должна производиться после того, как шестерня нарезана, и поэтому приходится уделять много внимания уменьшению коробления шестерен при последующей термообработке. Нормализация перед цементацией уменьшает коробление и обычно проводится при температуре на 28° выше, чем температура цементации. Последняя проводится при температуре между 897 и 927°. Цементуемые шестерни обычно закладываются в ящики из жаростойкого материала, наполненные порошкообразным карбюризатором. Получаемая толщина на-углероженного слоя составляет около 0,76 мм *.

Применяются два метода закалки после цементации, причем мнения о том, который из них дает лучшие результаты, значительно расходятся.

По первому методу шестерни закаливаются в масле непосредственно после выхода из цементационной печи и ‘охлаждения до нужной температуры, например до 870°. После закалки производится отпуск при температуре от 150 до 200°. Второй метод заключается в том, что шестерни после цементации охлаждаются в цементационных ящиках, затем вновь нагреваются до температуры 760—815° и закаливаются в масле. В последние годы вошел в употребление процесс газовой цементации. Шестерни укладываются на лотки и с помощью толкающего механизма продвигаются через печь при температуре 815°, где они подвергаются действию газовой среды, состоящей из окиси углерода, углекислоты, водорода и аммиака. Поступление и выход шестерен из печи совершаются через специальные тамбуры. Закалка производится немедленно по выходе из печи.

Закаленные шестерни. Среди сталей со средним содержанием углерода, пригодных для изготовления закаливаемых шестерен, следует указать никельмолибденовую сталь 4640 и хромистую сталь 5140. Первая нормализуется при температуре между 870 и 927° и затем после нарезки зубьев нагревается до 790—815” и закаливается в масле. После отпуска при определенной температуре шестерня получает твердость 400—450 по Бринелю, что значительно меньше твердости надлежащим образом цементованных шестерен. Термическая обработка шестерен из стали 6145 включает нормализацию при 900—955°, нагрев до 845—900° после нарезки зубьев и закалку в масле с последующим отпуском до желаемой твердости. Сравнивая цементуемые стали с закаливающимися, следует указать, что первые дают твердость поверхности обычно в пределах 58—65 по Роквеллу (шкала С), в то время как вторые — только 48—54. Однако закаливающиеся стали дают большую прочность и меньшее коробление.

Шестерни центробежной отливки. Промежуточное положение между нормальными цементуемыми и закаливающимися сталями занимают стали с содержанием углерода около 0,30%. Они дают более крепкую сердцевину, чем обычные цементуемые стали, и требуют лишь небольшого науглероживания поверхностного слоя. Примером таких сталей может служить сталь, применяемая для шестерен коробок передач легковых автомобилей Форд. Заготовки шестерен этих коробок передач отливаются центробежным способом. Форд уже продолжительное время применяет стальное литье для коленчатых валов двигателей, и сталь, идущая на шестерни, имеет такой же состав. Указанная сталь содержит: 0,30—0,38% углерода; 0,50—1,50% меди; 0,20—0,40% кремния; 0,55—0,75% марганца; 0,10—0,20% молибдена; 0,80—1,00% хорма и максимум по 0,05% фосфора и серы. Перед механической обработкой заготовки подвергаются нормализации, чтобы иметь твердость от 170 до 196 по Бринелю, а после нарезки зубьев шестерни подвергаются термической обработке, повышающей поверхностную твердость, и отпускаются до твердости 477 по Бринелю. Повышение поверхностной твердости осуществляется путем нагревания в циановой ванне до 815°, закалки в масле и отпуска при температуре 180°.

Обработанная таким образом сталь имеет временное сопротивление разрыву 15 350 кг/см2, предел упругости 14 950 кг/см2, относительное удлинение 0,75% в 50-миллиметровом образце и относительное сжатие поперечного сечения, равное 3%. Для шестерен грузовых автомобилей и тракторов, которые должны иметь большую износостойкость, содержание углерода в стали повышается до 0,38—0,45%.

Цианированные шестерни. Для повышения поверхностной твердости зубьев шестерен, изготовляемых из закаливающихся сталей, иногда применяется процесс цианирования. В качестве агента для повышения твердости используется цианистый натрий, который дешевле и эффективнее цианистого калия. Наиболее подходящей для применения этого процесса является хромистая сталь 5140. Прежде цианирование производилось следующим образом: шестерни нагревались до 815°, выдерживались в печи при этой температуре некоторое время, после чего погружались в ванну с расплавленными цианистыми солями. В настоящее время практикуют нагрев изделий непосредственно в расплавленных цианистых солях и последующую закалку в масле.

В процессе цианирования цианистая соль распадается при нагреве, и выделяющийся при этом азот входит в соединение с железом и легирующими элементами, образуя весьма твердые нитриды, обусловливающие высокую поверхностную твердость изделия. Для цианирования используются стали со средним содержанием углерода. В результате достигается большая прочность закаленной сердцевины изделия при высокой твердости поверхностного цианированного слоя, однако глубина этого слоя сравнительно мала.

Реклама:
Читать далее: Расчет коробок передач

Категория: - Автомобильные сцепления

Главная → Справочник → Статьи → Форум

Коробки передач со скользящими и с постоянно сцепленными шестернями

Категория:

   Автомобильные сцепления

Коробки передач со скользящими и с постоянно сцепленными шестернями

Первой коробкой передач, получившей широкое распространение на автомобилях, была коробка со скользящими шестернями, которые могли перемещаться на квадратном или шлицевом валу, для того чтобы входить в зацепление с шестернями, установленными на другом, параллельном первому, валу.

В конце двадцатых годов этот тип коробки передач был наиболее распространенным в США на легковых автомобилях, автобусах, грузовых автомобилях и тракторах. Позднее на легковых автомобилях коробки этого типа были вытеснены коробками передач с постоянно сцепленными шестернями и синхронизаторами, а также планетарными коробками передач, но эти коробки все еще широко .применяются на грузовых автомобилях и тракторах.

Коробка передач со скользящими шестернями была сконструирована Левассором, инженером фирмы Панар и Левассор, работавшей во Франции по ранним патентам Даймлера.

Метод включения вращающихся шестерен путем перемещения их в осевом направлении вначале считался грубым и неконструктивным, но после внесения ряда улучшений и усовершенствований этот тип коробки передач был признан более удовлетворительным, чем другие конструкции того времени, и применялся на миллионах автомобилей в течение нескольких десятилетий.

Коробка передач Левассора показана на рис. 1. Она имела два параллельных вала, вращающихся на подшипниках, смонтированных на раме автомобиля. Первый из этих валов, известный под названием ведущего, соединялся со сцеплением. Этот вал имел квадратное сечение и нес на себе блок из трех шестерен (каретка), который имел квадратное отверстие и мог скользить по валу. На ведомом валу располагались три другие шестерни, подобранные таким образом, чтобы зацепляться с соответствующими шестернями ведущего вала. Шестерни на обоих валах размещены так, что при перемещении блока шестерен на ведущем валу каждая пара соответствующих шестерен обоих валов могла быть приведена в зацепление последовательно, без задевания за другие шестерни, Перемещение скользящей каретки осуществлялось посредством рычага, расположенного удобно для водителя, и соединительного устройства. На заднем конце ведомого вала имелась коническая шестерня, сцеплявшаяся с конической шестерней на ‘.поперечном валу, от которого крутящий момент передавался к задним колесам посредством цепей. Одним из недостатков коробки передач Левао сора было то, что крутящий момент всегда передавался через пару шестерен, даже когда в этом, т. е. в передаче через шестерни, не было никакой необходимости.

Рис. 1. Коробка передач Леваосора со скользящими шестернями: 1 — шестерни заднего хода; 2 — шестерни первой передачи; 3 — шестерни второй передачи; 4— шестерни третьей передачи.

Этот недостаток был устранен в коробке передач, предложенной несколькими годами позже Рено, которая отличалась от коробки Левассора тем, что шестерни вводились в зацепление путем радиального, а не осевого перемещения. Первый вал коробки передач Рено состоял из двух частей: передней (ведущий вал) и задней или ведомой (ведомый вал); передний конец ведомой части имел опору в заднем конце ведущей части. Второй вал служил в качестве промежуточного, через который вращение передавалось на первой и второй передачах и заднем ходу. Для получения третьей передачи обе части первого вала соединялись вместе посредством кулачковой муфты, зубья которой были выполнены заодно с шестернями, которые могли быть введены в зацепление посредством осевого перемещения. Это давало так называемую прямую передачу, при которой крутящий момент передавался через коробку передач, минуя шестерни. Вскоре прямая передача была введена также в конструкцию коробки передач Левассора со скользящими шестернями, как представлено на рис. 79. Эта коробка, известная под названием трехступенчатой с последовательным переключением и с прямой высшей передачей, устарела уже в начале текущего столетия.

По мере увеличения скорости автомобилей вошли в употребление коробки передач, имевшие четыре передачи переднего хода и задний ход и дававшие водителю возможность использовать двигатель при любых условиях на наиболее выгодных режимах. Однако четырехступенчатая коробка с последовательным переключением передач получалась слишком длинной. Это не только делало коробку громоздкой и тяжелой, но и приводило к тому, что валы ее, будучи сравнительно длинными, получали значительный прогиб’под действием сил на зубьях шестерен, что приводило к увеличению шума при работе коробки и увеличению потерь. Большая длина коробки вызывалась главным образом тем, что шесте.они на каждом валу должны быть размещены одна относительно другой на достаточном расстоянии, чтобы избежать одновременного включения нескольких передач.

Рис. 2. Трехступенчатая коробка передач со скользящими шестернями и муфтой прямой передачи: 1 — муфта прямой передачи; 2 — шестерни второй передачи; 3 — шестерни первой передачи; 4 — шестерни заднего хода.

Рис. 3. Четырехступенчатая коробка передач со скользящими шестернями: 1 — ведущий вал; 2 — ведущая шестерня постоянного зацепления; 3 — зубчатая муфта; 4 — ведомая шестерня третьей передачи; 5 — ведомая шестерня второй передачи; 6 — ведомая шестерня первой передачи; 7 — ведомый вал; 8 — блок шьстерен заднего хода; 9 — ведущая шестерня первой передачи и заднего хода; 10 — промежуточный вал; 11—ведущая шестерня второй передачи; 12—ведущая шестерня третьей передачи; 13—ведомая шестерня постоянного зацепления.

Это затруднение было впервые преодолено Майбахом, инженером фирмы Даймлер в Германии, который применил две скользящие каретки в коробке, не имевшей прямой передачи. Этот же принцип был позднее применен в коробках, имеющих прямую передачу, и получил исключительное распространение для трех- и четырехступенчатых коробок передач со скользящими шестернями.

Коробки с тремя передачами вперед и задним ходом обычно име-т Две скользящие каретки, коробки с четырьмя передачами — три.

Несколько скользящих кареток управляются посредством одного рычага переключения. Эта коробка передач, известная под названием коробки со скользящими шестернями и избирательным переключением, имеет то преимущество перед коробкой с последовательным переключением, что допускает перемену передач в любом порядке без перехода через промежуточные передачи. Конструкция четырехступенчатой коробки передач этого типа показана на рис. 3, из которой ясно видна ее компактность.

Реклама:
Читать далее: Материалы для шестерен коробок передач

Категория: - Автомобильные сцепления

Главная → Справочник → Статьи → Форум

Устройство ручной коробки передач

Синхронизатор состоит из ступицы с сухарями, муфты включения, блокирующего кольца и шестерни с фрикционным конусом. В конструкции коробки передач один синхронизатор обслуживает две передачи (шестерни). На примере конструкции одноконусного синхронизатора коробки передач:

Элементы: 1 — блокирующее кольцо, 2 — ступица, 3 — сухарь, 4 — кольцевая пружина, 5 — фрикционный конус шестерни, 6 — шестерня, 7 — блокирующее кольцо, 8 — муфта синхронизатора, 9 — сухарь, 10 — шестерня.

Конструктивной основой синхронизатора является ступица. Она имеет внутренние и наружные шлицы. С помощью внутренних шлицев ступица соединяется с вторичным валом коробки передач и имеет возможность осевого перемещения по нему в разные стороны. Наружные шлицы соединяют ступицу с муфтой включения.

По окружности ступицы под углом 120 градусов выполнены три паза, в которые установлены подпружиненные сухари, которые нажимают на блокирующее кольцо при включении передачи и способствуют блокировке муфты на этапе синхронизации.

Муфта включения (другое название – муфта синхронизатора) обеспечивает жесткое соединение вала и шестерни. Муфта насажена на ступицу и имеет внутренние шлицы. На шлицах выполнена кольцевая проточка, в которой размещаются выступы сухарей. Снаружи муфта синхронизатора соединяется с вилкой коробки передач.

Блокирующее кольцо обеспечивает синхронизацию и препятствует замыканию муфты до момента выравнивания скоростей вала и шестерни. С внутренней стороны блокирующее кольцо имеет коническую поверхность, которая взаимодействует с фрикционным конусом шестерни. Снаружи блокирующее кольцо имеет шлицы, с помощью которых производится блокировка муфты включения.

На торцевой поверхности блокирующего кольца со стороны ступицы выполнено три паза, в которые входят сухари ступицы. Пазы препятствуют прокручиванию кольца при соприкосновении с фрикционным конусом (в них упираются сухари). Размер пазов в 1,5 раза превышает размер сухарей. В некоторых конструкциях синхронизаторов, наоборот, на блокирующем кольце выполнены выступы, а пазы — в ступице.

Для увеличения поверхности соприкосновения, снижения усилия при переключении передач применяются многоконусные синхронизаторы: двухконусный, трехконусный. Например, в трехконусном синхронизаторе помимо блокирующего (наружного) кольца устанавливается еще внутреннее и промежуточное кольца. Для предотвращения проворачивания на кольцах выполнены выступы, которые фиксируются в пазах шестерни и блокирующего кольца.

Таким образом, в трехконусном синхронизаторе созданы три поверхности трения: между конусом шестерни и внутренним кольцом, между внутренним и промежуточным кольцом, между промежуточным и блокирующим кольцом. В зависимости от конструкции в одной коробке передач могут устанавливаться синхронизаторы с различным числом конусов.

На картинках ниже: 1 — сухарь, 2 — включаемая шестерня, 3 — блокирующее кольцо, 4 — муфта синхронизатора, 5 — ступица, 6 — торец шлица муфты синхронизатора, 7 — торец шлица блокирующей муфты, 8 — паз в ступице, 9 — выступ блокирующего кольца, 10 — зубчатый венец шестерни.

В нейтральном положении рычага коробки передач муфты синхронизаторов находятся в среднем положении, шестерни на ведомом валу вращаются свободно, поток мощности не передается (исходное положение синхронизатора):

При включении передачи вилка перемещает муфту синхронизатора из среднего положения в направлении шестерни. Вместе с муфтой сдвигаются сухари, которые воздействуют на блокирующее кольцо. Кольцо прижимается к конусу шестерни. На поверхности возникает сила трения, которая поворачивает кольцо до упора сухарей в пазах кольца (кольцо стопорится от проворачивания). В этом положении блокирующее кольцо препятствует дальнейшему продвижению муфты синхронизатора по оси вала, так как торцы шлицев блокирующего кольца располагаются напротив торцов шлицев муфты:

Далее под действием сил трения происходит синхронизация скоростей шестерни и ведомого вала. Когда скорости выравнены, под нажимом шлицев муфты блокирующее кольцо поворачивается в противоположную сторону, блокировка муфты снимается, шлицы муфты свободно проходят для зацепления с венцом шестерни. Происходит жесткое соединение вторичного вала коробки передач и шестерни:

Несмотря на множество операций, весь процесс синхронизации и включения передачи занимает доли секунды.

Принцип работы и устройство коробки передач. Ремонт коробки передач

Основным недостатком большинства двигателей внутреннего сгорания является несовпадение скоростей вращения колес и маховика. Дополнительным минусом является тот факт, что максимальный крутящий момент в силовых агрегатах достигается только в небольшом промежутке оборотов. На максимальных оборотах маховика набирается предельная мощность.

Системы трансмиссии и ее разные виды применяются для того, чтобы двигатель мог работать в оптимальном режиме при разных условиях. В большинстве автомобилей используется механическая КПП, устройство и принцип работы которой известны далеко не каждому автолюбителю.

Принцип работы коробки передач

В конструкцию коробки переключения передач входят зубчатые шестерни, которые входят и выходят из зацепления по воле водителя, формируя тем самым передачи с разными передаточными отношениями.

Механическая коробка передач в автомобиле функционирует только вместе с системой сцепления, соответственно, в момент переключения передач происходит отключение трансмиссии и двигателя. В момент изменения передачи через трансмиссию не может проходить большой крутящий момент. Такое функционирование достигается за счет устройства коробки переключения передач.

Зубчатые колеса и валы КПП

Классические МКПП состоят из набора валов, собранных в картере или корпусе. При помощи подшипников происходит вращение валов коробки передач. Шестерни крепятся непосредственно к валам КПП. Конструкция коробки передач может меняться в зависимости от количества установленных валов и быть двухвальной или трехвальной.

Заднеприводные автомобили оснащаются подобными трансмиссиями. Общее устройство коробок передач такого типа включает в себя специальные колеса и устройства синхронизации вкупе с реверсивной шестерней, предназначенной для передвижения задним ходом.

Обязательной деталью конструкции КПП являются валы: первичный, вторичный и расположенный между ними специальный.

Главный вал соединен непосредственно с двигателем автомобиля через систему сцепления; вторичный, или ведомый, функционирует с карданом. Энергия вращения с ведущего вала на ведомый передается благодаря промежуточному валу.

Особенности конструкции трансмиссии

В большинстве случаев первичный и вторичный валы в коробке передач установлены друг за другом. Опора ведомого вала выполнена на основе подшипника ведущего вала коробки передач, расположенного в хвостовой части ведущего вала. Жесткая связь между этими валами не предусматривается конструкцией коробки переключения передач, благодаря чему оба вала могут функционировать независимо друг от друга.

Промежуточный вал в конструкции трансмиссии размещается между ведущим и ведомым валам, каждый из которых оснащен зубчатыми колесами. Зубцы на таких колесах косые, что позволяет понизить уровень вибрации и шумов во время работы системы.

Ведущий вал оснащен только однозубчатым колесом, передающим крутящий момент промежуточному валу. Расположение шестеренок вторичного, или ведомого, вала позволяет им свободно вращаться, однако перемещаться по продольной оси они не могут. Для включения передачи они блокируются при помощи специального блокировочного устройства: в таком положении на них передается энергия вращения от вала.

Шестеренки, установленные на промежуточный вал, располагаются напротив каждого из колес первичного и вторичного валов. Они на постоянной основе находятся в зацеплении с прочими шестернями конструкции. На промежуточный вал с первичного крутящий момент передается всегда. Принцип работы коробки передач кроется во включении конкретной передачи посредством подключения определенной шестерни, расположенной на ведомом вале.

Переключение передач трансмиссии

Устройство коробки передач не подразумевает наличие одних только зубчатых колес и валов: в конструкцию входят специальные муфты. Каждая из них имеет отличную от зубчатых колес конструкцию и крепится к определенному валу, вращаясь вместе с ним. При этом возможно их перемещение по продольной оси.

Со стороны направленных к муфтам шестеренок ведомого вала располагаются специальные вилки. Аналогичные им детали находятся непосредственно на самих муфтах.

При переключении водителем рычага передач специальным приводом приводятся в действие вилки, двигающие муфты. Замковая система при этом не позволяет активировать сразу несколько передач, что вполне возможно при условии включения рычагом сразу двух ползунов. Замковый механизм стопорит ползуны в нейтральном положении в тот момент, когда начинает двигаться третий ползун. Аналогичным образом исключается одновременная работа сразу двух передач.

Венцы муфты и нужной для переключения передачи шестеренки соединяются, при этом муфта вращается вместе с валом. После соединения с шестерней происходит блокировка последней и их последующее совместное вращение, в результате чего крутящий момент передается от КПП на колесный привод.

Синхронизаторы

Помимо перечисленных выше компонентов, в устройство коробки передач входят дополнительные детали. Описанный выше принцип работы КПП сопровождается вибрациями, громкими шумами и ударами вкупе с необходимостью для водителя самостоятельно определять момент работы муфты и шестеренки на одинаковых оборотах.

В современных коробках переключения передач используются специальные муфты, именуемые синхронизаторами. Их основная задача - уравнивание скорости вращения муфты и зубчатого колеса и устранение блокировки колеса.

Коробки передач двухвального типа

Подобные трансмиссии обладают той же конструкцией, что и трехвальные КПП, за одним исключением: у них отсутствует промежуточный вал. Такие коробки устанавливаются на автомобили с передним приводом. Вращение валов осуществляется в параллельных осях, при этом крутящий момент с одного из зубчатых колес передается на зафиксированную синхронизаторами ведомую валом шестеренку. Принцип работы двухвальной системы такой же, как и в трехвальной, однако в ней невозможна прямая передача.

Устройство коробок передач автомобилей ВАЗ

Большинство автомобилей марки ВАЗ комплектуются пятиступенчатыми механическими трансмиссиями с двухвальной системой, оснащенной дифференциалом. Первичный вал комплектуется зубчатыми колесами с 1 по 4 передачи, 5-я шестерная передача является съемной. Между собой они соединены ведомыми шестеренками.

Одним из основных преимуществ является легкий ремонт коробки передач такого типа, поскольку она является модернизированной версией четырехступенчатого аналога с унифицированными деталями.

От механической трансмиссии к автоматической

Многие автолюбители-новички придерживаются мнения, что автоматическая трансмиссия представляет собой коробку переключения передач и гидротрансформатор.

Гидротрансформатор представляет собой систему из двух лопастных механизмов: турбины и центробежного насоса. Между ними располагается направляющий реактор. Коленвал двигателя жестко скреплен с колесом насоса. Аналогичное соединение имеется между турбинным колесом и валом КПП. Реактор может вращаться или быть заблокированным обгонной муфтой в зависимости от того, в каком конкретно режиме функционирует ДВС.

Автоматическая коробка передач обладает более сложной конструкцией. Большая часть вырабатываемой энергии направляется на перекачку масла и работу насоса, создающего давление масла в каналах. КПД автоматической трансмиссии ниже, чем механических.

Масляные потоки передают энергию вращения посредством отбрасывания на турбину насосом. Лопасти насоса и турбины имеют определенную геометрию, что улучшает циркуляцию жидкости. Поскольку между КПП и двигателем отсутствует жесткая сцепка, мотор можно останавливать даже при включенной передаче.

Планетарные передачи

Изменение передаточных чисел происходит при вращении одних деталей и жесткой фиксации других. Вал гидтротрансформатора передает крутящий момент и, соответственно, вращение на планетарные системы.

Основным отличием автомата от механики является то, что включение любой передачи осуществляется без разрыва потока мощности: при дезактивации одной передачи происходит активация другой. Такой переход осуществляется без рывков, которые могут чувствоваться водителем во время езды.

Виды коробок передач

Исключая стандартную механическую трансмиссию, существуют и другие виды КПП - роботизированная, вариаторная и автоматическая.

  1. Вариаторная коробка передач - бесступенчатая. Основными деталями ее конструкции являются раздвижные шкивы и соединяющий их ремень, имеющий трапециевидную форму. Основным преимуществом такой трансмиссии является поддержание оптимального режима работы автомобиля. В качестве дополнительных можно отметить экономичность, плавность движения и динамичность разгона. Если сравнивать с автоматической трансмиссией, то конструкция вариатора значительно проще, соответственно, и ремонт коробки передач такого типа легче. Несмотря на свои достоинства, вариаторная КПП уступает механической в экономичности и динамике. Помимо этого, вариатор не совместим с мощным двигателем, поскольку его ремень отличается небольшой долговечностью. Обслуживание и ремонт такой трансмиссии - дорогостоящее удовольствие, в связи с чем ее проще заменить. Кроме того, для того чтобы тронуться с места и двигаться назад, требуется установка дополнительных механизмов.
  2. Устройство коробки передач - робота практически не отличается от механической: передача крутящего момента к трансмиссии от двигателя осуществляется посредством однодискового сцепления. При этом имеется и свой нюанс: процессы переключения передач и включения/отключения сцепления в роботизированной трансмиссии полностью автоматизированы. Благодаря этому такая КПП значительно упрощает процесс управления автомобилем: водителю не требуется вручную переключать передачи. К дополнительным преимуществам можно отнести небольшой вес и экономичность. Впрочем, имеются у нее и свои минусы: отсутствие плавности работы и задержка при переключении передач. На высокой скорости движения переключение передач может сопровождаться толчками и рывками. Исправить ситуацию в ручном режиме не получится, поскольку управление сцеплением полностью автоматизировано и осуществляется электроникой. В четкости и точности переключения передач роботизированная КПП значительно уступает автоматической. Кроме того, автомобили, оснащенные роботизированной трансмиссией, при начале движения немного откатываются назад. С учетом всех перечисленных недостатков роботизированные коробки чаще всего устанавливаются на бюджетные модели транспортных средств.

Залогом эффективной работы трансмиссии является оптимальный уровень масла в картере. Определить его и подсказать, как проверить масло в коробке передач, поможет специалист автосервиса или информация, указанная в руководстве по эксплуатации транспортного средства.

Основные неисправности и ремонт КП

Оперативный ремонт трансмиссии может потребоваться при диагностике следующих наиболее часто встречаемых неисправностей: самопроизвольного отключения и затрудненного включения передач, утечки масла, перегрева коробки или сторонних шумов в работе.

Затрудненное включение передачи может провоцироваться следующими факторами:

  • деформация вилки или рычага переключения передач;
  • заедает сферический шарнир;
  • тугой ход штока из-за забитых гнезд, что заклинивает блокировочные сухари.

Передачи могут самопроизвольно отключаться, причем причины этого могут быть разными:

  • износ гнезд или шариков штоков;
  • износ колец синхронизатора или зубцов муфты;
  • понижение упругости пружин фиксаторов.

Износ синхронизаторов, шестерен или подшипников, люфт валов, слишком грязное масло или его низкий уровень могут провоцировать появление сторонних шумов при работе трансмиссии.

Многие владельцы отмечают утечку масла из коробки передач, причиной чему может послужить недостаточно прочное крепление картерной крышки, износ прокладок или сальников валов. Низкий уровень масла в коробке приводит к ее перегреву, что может стать причиной полного выхода трансмиссии из строя.

Ремонт коробок переключения передач во всех вышеперечисленных случаях осуществляется либо при помощи специальных ремкомплектов, либо посредством замены поврежденных и вышедших из строя деталей.


Смотрите также

 

"Питер - АТ"
ИНН 780703320484
ОГРНИП 313784720500453

Новости